This paper establishes the existence and uniqueness, and also presents a blow-up criterion, for solutions of the quasi-geostrophic (QG) equation in a framework of Fourier type, specifically Fourier-Besov-Morey spaces. If it is assumed that the initial data θ0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta _0$$\end{document} is small and belonging to the critical Fourier-Besov-Morrey spaces FNp,λ,q3-2α+λ-2p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathscr {F} {\mathscr {N}}_{p, \lambda , q}^{3-2 \alpha +\frac{\lambda -2}{p}}$$\end{document}, we get the global well-posedness results of the QG equation (1). Moreover, we prove that there exists a time T>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T > 0$$\end{document} such that the QG equation (1) admits a unique local solution for large initial data.