Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier-Besov-Morrey spaces.

被引:0
|
作者
Achraf Azanzal
Chakir Allalou
Said Melliani
机构
[1] Sultan Moulay Slimane University,Laboratory LMACS, FST of Beni Mellal
关键词
2D quasi-geostrophic equation; Subcritical and critical dissipation; Littlewood-Paley theory; Well-posedness; Blow-up criterion; Fourier-Besov-Morrey spaces; 35A01; 35A02; 35k30; 35K08; 35Q35; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes the existence and uniqueness, and also presents a blow-up criterion, for solutions of the quasi-geostrophic (QG) equation in a framework of Fourier type, specifically Fourier-Besov-Morey spaces. If it is assumed that the initial data θ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _0$$\end{document} is small and belonging to the critical Fourier-Besov-Morrey spaces FNp,λ,q3-2α+λ-2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F} {\mathscr {N}}_{p, \lambda , q}^{3-2 \alpha +\frac{\lambda -2}{p}}$$\end{document}, we get the global well-posedness results of the QG equation (1). Moreover, we prove that there exists a time T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document} such that the QG equation (1) admits a unique local solution for large initial data.
引用
收藏
页码:23 / 48
页数:25
相关论文
共 50 条