Limit Property for Regular and Weak Generalized Convolution

被引:0
作者
Barbara H. Jasiulis
机构
[1] University of Wrocław,Institute of Mathematics
来源
Journal of Theoretical Probability | 2010年 / 23卷
关键词
Weakly stable distribution; Generalized weak convolution; Generalized convolution; Factor of strictly stable distribution; 60A10; 60B05; 60E05; 60E07; 60E10;
D O I
暂无
中图分类号
学科分类号
摘要
We denote by ℘ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{P_{+}})$\end{document} the set of all probability measures defined on the Borel subsets of the real line (the positive half-line [0,∞)). K. Urbanik defined the generalized convolution as a commutative and associative ℘+-valued binary operation • on ℘+2 which is continuous in each variable separately. This convolution is distributive with respect to convex combinations and scale changes Ta (a>0) with δ0 as the unit element. The key axiom of a generalized convolution is the following: there exist norming constants cn and a measure ν other than δ0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{c_{n}}\delta_{1}^{\bullet n}\to\nu$\end{document} .
引用
收藏
页码:315 / 327
页数:12
相关论文
共 20 条
[1]  
Jasiulis B.H.(2008)On the connections between weakly stable and pseudo-isotropic distributions Statist. Probab. Lett. 78 2751-2755
[2]  
Misiewicz J.K.(1974)Quasi-stable functions Bull. Polish Acad. Sci. Math. 22 263-268
[3]  
Kucharczak J.(1986)Transformations preserving weak stability Bull. Polish Acad. Sci. Math. 34 475-486
[4]  
Urbanik K.(2007)Weakly stable vectors and magic distribution of C. Cambanis, R. Keener and G. Simons Appl. Math. Sci. 1 975-996
[5]  
Kucharczak J.(2005)Classes of measures closed under mixing and convolution. Weak stability Studia Math. 167 195-213
[6]  
Urbanik K.(1983)A characterisation of Gaussian measures Studia Math. 77 59-68
[7]  
Mazurkiewicz G.(1987)A counterexample on generalized convolutions Colloq. Math. 54 143-147
[8]  
Misiewicz J.K.(1989)Atoms of characteristic measures Colloq. Math. 58 125-129
[9]  
Oleszkiewicz K.(1964)Generalized convolutions Studia Math. 23 217-245
[10]  
Urbanik K.(1973)Generalized convolutions II Studia Math. 45 57-70