An Adaptive P1 Finite Element Method for Two-Dimensional Maxwell’s Equations

被引:0
作者
S. C. Brenner
J. Gedicke
L.-Y. Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation & Technology
[2] Humboldt-Universität zu Berlin,Institut für Mathematik
来源
Journal of Scientific Computing | 2013年 / 55卷
关键词
Adaptivity; Error estimators; Finite element method; Hodge decomposition; Maxwell’s equations;
D O I
暂无
中图分类号
学科分类号
摘要
Recently a new numerical approach for two-dimensional Maxwell’s equations based on the Hodge decomposition for divergence-free vector fields was introduced by Brenner et al. In this paper we present an adaptive P1 finite element method for two-dimensional Maxwell’s equations that is based on this new approach. The reliability and efficiency of a posteriori error estimators based on the residual and the dual weighted-residual are verified numerically. The performance of the new approach is shown to be competitive with the lowest order edge element of Nédélec’s first family.
引用
收藏
页码:738 / 754
页数:16
相关论文
共 41 条
[1]  
Beck R.(2000)Residual based a posteriori error estimators for eddy current computation Modél. Math. Anal. Numér. 34 159-182
[2]  
Hiptmair R.(1996)A feed-back approach to error control in finite element methods: basic analysis and examples East-West J. Numer. Math. 4 237-264
[3]  
Hoppe R.H.W.(2008)Equilibrated residual error estimator for edge elements Math. Comput. 77 651-672
[4]  
Wohlmuth B.(2007)A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations Math. Comput. 76 573-595
[5]  
Becker R.(2008)A locally divergence-free interior penalty method for two-dimensional curl-curl problems SIAM J. Numer. Anal. 46 1190-1211
[6]  
Rannacher R.(2009)A nonconforming penalty method for a two-dimensional curl-curl problem Math. Models Methods Appl. Sci. 19 651-668
[7]  
Braess D.(2011)Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations Math. Comput. 81 643-659
[8]  
Schöberl J.(2005)Estimation of higher Sobolev norm from lower order approximation SIAM J. Numer. Anal. 42 2136-2147
[9]  
Brenner S.C.(2005)A unifying theory of a posteriori finite element error control Numer. Math. 100 617-637
[10]  
Li F.(2005)Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations J. Numer. Math. 13 19-32