Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source

被引:0
作者
Quoc Hung Phan
机构
[1] Duy Tan University,Institute of Research and Development
来源
Journal of Dynamics and Differential Equations | 2017年 / 29卷
关键词
Semilinear parabolic equation; Liouville-type theorem ; Blow-up; Primary 35B53; 35B44; Secondary 35K57; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Liouville-type theorem for the semilinear parabolic equation ut-Δu=|x|aup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t-\Delta u =|x|^a u^p$$\end{document} with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb R}$$\end{document}. Relying on the recent result of Quittner (Math Ann, doi:10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, in the class of nonnegative bounded solutions. We also provide a partial result in dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.
引用
收藏
页码:1131 / 1144
页数:13
相关论文
共 50 条
[41]   BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY [J].
Liu, Dengming ;
Mu, Chunlai ;
Ahmed, Iftikhar .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (04) :1353-1370
[42]   Blow-Up of the Solution for a Semilinear Parabolic Problem with a Mixed Source [J].
Chan, Wai Yuen .
MATHEMATICS, 2022, 10 (17)
[43]   Global existence and blow-up for semilinear parabolic equation with critical exponent in RN [J].
Fang, Fei ;
Zhang, Binlin .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (03) :1-23
[44]   Blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy [J].
Wu, Xiulan ;
Guo, Bin ;
Gao, Wenjie .
APPLIED MATHEMATICS LETTERS, 2013, 26 (05) :539-543
[45]   On a spectrum of blow-up patterns for a higher-order semilinear parabolic equation [J].
Galaktionov, VA .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2011) :1623-1643
[46]   Global existence and blow-up of solution for the semilinear wave equation with interior and boundary source terms [J].
Zhang, Hongwei ;
Zhang, Wenxiu ;
Hu, Qingying .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[47]   Global existence and blow-up of solution for the semilinear wave equation with interior and boundary source terms [J].
Hongwei Zhang ;
Wenxiu Zhang ;
Qingying Hu .
Boundary Value Problems, 2019
[48]   On blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy [J].
Wang, Hua ;
He, Yijun .
APPLIED MATHEMATICS LETTERS, 2013, 26 (10) :1008-1012
[49]   Numerical blow-up for a nonlinear heat equation [J].
Firmin K. N’Gohisse ;
Théodore K. Boni .
Acta Mathematica Sinica, English Series, 2011, 27 :845-862
[50]   Numerical blow-up for a nonlinear heat equation [J].
N'Gohisse, Firmin K. ;
Boni, Theodore K. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) :845-862