Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source

被引:0
作者
Quoc Hung Phan
机构
[1] Duy Tan University,Institute of Research and Development
来源
Journal of Dynamics and Differential Equations | 2017年 / 29卷
关键词
Semilinear parabolic equation; Liouville-type theorem ; Blow-up; Primary 35B53; 35B44; Secondary 35K57; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Liouville-type theorem for the semilinear parabolic equation ut-Δu=|x|aup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t-\Delta u =|x|^a u^p$$\end{document} with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb R}$$\end{document}. Relying on the recent result of Quittner (Math Ann, doi:10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, in the class of nonnegative bounded solutions. We also provide a partial result in dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.
引用
收藏
页码:1131 / 1144
页数:13
相关论文
共 50 条
[31]   Bounds for blow-up time in a semilinear pseudo-parabolic equation with nonlocal source [J].
Lu, Yang ;
Fei, Liang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[32]   Sharp threshold for blow-up and global existence in a semilinear parabolic equation with variable source [J].
Yang, Jinge ;
Yu, Haixiong .
BOUNDARY VALUE PROBLEMS, 2017,
[33]   Bounds for blow-up time in a semilinear pseudo-parabolic equation with nonlocal source [J].
Yang Lu ;
Liang Fei .
Journal of Inequalities and Applications, 2016
[35]   Sharp threshold for blow-up and global existence in a semilinear parabolic equation with variable source [J].
Jinge Yang ;
Haixiong Yu .
Boundary Value Problems, 2017
[37]   On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation [J].
Vo Van Au ;
Yong Zhou ;
Donal O’Regan .
Mediterranean Journal of Mathematics, 2022, 19
[38]   Existence and blow-up of solutions for a degenerate semilinear parabolic equation [J].
Ran, Yanping ;
Peng, Congming .
CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 :1454-1458
[39]   On similarity solutions and blow-up spectra for a semilinear wave equation [J].
Galaktionov, VA ;
Pohozaev, SI .
QUARTERLY OF APPLIED MATHEMATICS, 2003, 61 (03) :583-600
[40]   On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation [J].
Vo Van Au ;
Zhou, Yong ;
O'Regan, Donal .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)