Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source

被引:0
作者
Quoc Hung Phan
机构
[1] Duy Tan University,Institute of Research and Development
来源
Journal of Dynamics and Differential Equations | 2017年 / 29卷
关键词
Semilinear parabolic equation; Liouville-type theorem ; Blow-up; Primary 35B53; 35B44; Secondary 35K57; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Liouville-type theorem for the semilinear parabolic equation ut-Δu=|x|aup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t-\Delta u =|x|^a u^p$$\end{document} with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb R}$$\end{document}. Relying on the recent result of Quittner (Math Ann, doi:10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, in the class of nonnegative bounded solutions. We also provide a partial result in dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.
引用
收藏
页码:1131 / 1144
页数:13
相关论文
共 50 条
[21]   Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II [J].
Payne, L. E. ;
Philippin, G. A. ;
Piro, S. Vernier .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) :971-978
[22]   Global existence and blow-up of solutions to a semilinear heat equation with logarithmic nonlinearity [J].
Peng, Jingmei ;
Zhou, Jun .
APPLICABLE ANALYSIS, 2021, 100 (13) :2804-2824
[23]   Blow-up problem for semilinear heat equation with nonlinear nonlocal boundary condition [J].
Gladkov, Alexander ;
Kavitova, Tatiana .
APPLICABLE ANALYSIS, 2016, 95 (09) :1974-1988
[24]   CONVERGENCE OF A BLOW-UP CURVE FOR A SEMILINEAR WAVE EQUATION [J].
Sasaki, Takiko .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03) :1133-1143
[25]   The blow-up problem for a semilinear parabolic equation with a potential [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :418-427
[26]   A LIOUVILLE THEOREM FOR VECTOR VALUED SEMILINEAR HEAT EQUATIONS WITH NO GRADIENT STRUCTURE AND APPLICATIONS TO BLOW-UP [J].
Nouaili, Neila ;
Zaag, Hatem .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) :3391-3434
[27]   A blow-up theorem for a discrete semilinear wave equation [J].
Matsuya, Keisuke .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (03) :457-465
[28]   Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation [J].
Ma, Bingqing ;
Dong, Yongli .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[29]   Gradient estimates and Liouville-type theorems for a weighted nonlinear elliptic equation [J].
Bingqing Ma ;
Yongli Dong .
Journal of Inequalities and Applications, 2018
[30]   On blow-up at space infinity for semilinear heat equations [J].
Giga, Y ;
Umeda, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (02) :538-555