Basics and Application Possibilities of Natural Language Processing (NLP) in the Radiology

被引:5
作者
Jungmann, F. [1 ]
Kuhn, S. [2 ]
Kaempgen, B. [3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Univ Med, Klin & Poliklin Diagnost & Intervent Radiol, Langenbeckstr 1, D-55131 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Univ Med, Zentrum Orthopad & Unfallchirurg, Mainz, Germany
[3] Empolis Informat Management GmbH, Technol Pk Wurzburg Rimpar, Rimpar, Germany
来源
RADIOLOGE | 2018年 / 58卷 / 08期
关键词
INFORMATION;
D O I
10.1007/s00117-018-0426-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Due to the increasing demands in radiology, applications that enable quality assurance and continuous process optimization are required. The principles of Natural Language Processing (NLP) as a computer-based method for structuring of free text reports are explained and application scenarios are sketched. The structuring of free texts succeeds by several theories, linguistic techniques (word meanings, word context, negations), statistical methods with rules and currently with deep learning approaches. Medical encyclopedias, such as RadLexA (R), are suitable for coding findings. NLP was used in our own radiology clinic to check the quality of 3756 CT reports. In our case study, NLP proved to be a helpful, automated tool for internal quality testing. NLP offers numerous application scenarios for decision support and for quality management in radiology.
引用
收藏
页码:764 / 768
页数:5
相关论文
共 21 条
  • [1] Automatic Lung-RADS™ classification with a natural language processing system
    Beyer, Sebastian E.
    McKee, Brady J.
    Regis, Shawn M.
    McKee, Andrea B.
    Flacke, Sebastian
    El Saadawi, Gilan
    Wald, Christoph
    [J]. JOURNAL OF THORACIC DISEASE, 2017, 9 (09) : 3114 - +
  • [2] Bundesamt fur Strahlenschutz, 2017, HAUF RONTG
  • [3] Natural Language Processing Technologies in Radiology Research and Clinical Applications
    Cai, Tianrun
    Giannopoulos, Andreas A.
    Yu, Sheng
    Kelil, Tatiana
    Ripley, Beth
    Kumamaru, Kanako K.
    Rybicki, Frank J.
    Mitsouras, Dimitrios
    [J]. RADIOGRAPHICS, 2016, 36 (01) : 176 - 191
  • [4] Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports
    Chen, Po-Hao
    Zafar, Hanna
    Galperin-Aizenberg, Maya
    Cook, Tessa
    [J]. JOURNAL OF DIGITAL IMAGING, 2018, 31 (02) : 178 - 184
  • [5] Chiticariu Laura, 2013, P 2013 C EMP METH NA, P827
  • [6] What can natural language processing do for clinical decision support?
    Demner-Fushman, Dina
    Chapman, Wendy W.
    McDonald, Clement J.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2009, 42 (05) : 760 - 772
  • [7] Automated Detection Using Natural Language Processing of Radiologists Recommendations for Additional Imaging of Incidental Findings
    Dutta, Sayon
    Long, William J.
    Brown, David F. M.
    Reisner, Andrew T.
    [J]. ANNALS OF EMERGENCY MEDICINE, 2013, 62 (02) : 162 - 169
  • [8] Friedman C, 1997, J AM MED INFORM ASSN, P595
  • [9] Structured Reporting in Radiology
    Ganeshan, Dhakshinamoorthy
    Phuong-Anh Thi Duong
    Probyn, Linda
    Lenchik, Leon
    McArthur, Tatum A.
    Retrouvey, Michele
    Ghobadi, Emily H.
    Desouches, Stephane L.
    Pastel, David
    Francis, Isaac R.
    [J]. ACADEMIC RADIOLOGY, 2018, 25 (01) : 66 - 73
  • [10] Information extraction from multi-institutional radiology reports
    Hassanpour, Saeed
    Langlotz, Curtis P.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2016, 66 : 29 - 39