Conditions of Local Asymptotic Normality for Gaussian Stationary Processes

被引:0
作者
V. N. Solev
A. Zerbet
机构
[1] Steklov Mathematical Institute,St.Petersburg Department of the
关键词
Stationary Process; Spectral Density; Gaussian Process; Regularity Condition; Asymptotic Normality;
D O I
10.1023/A:1026102909036
中图分类号
学科分类号
摘要
Let {\bold x}[ċ] be a stationary Gaussian process with zero mean and spectral density f, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} be the σ-algebra induced by the random variables {\bold x}[ϕ], ϕ ∈ D(R1), and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document}t, t > 0, be the σ-algebra induced by the random variables x[ϕ],supp ϕ ∈ [-t,t]. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}(f) the Gaussian measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} generated by {\bold x}. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}t(f) be the restriction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}(f) to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document}t. Let f and g be nonnegative functions such that the measures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}t(f) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document}t(g) are absolutely continuous. Put \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}_t (f,g) = \log \frac{{d\mathcal{P}_t (f)}}{{d\mathcal{P}_t (g)}}.$$ \end{document} For a fixed g(u) and for f(u)= ft(u) close to g(u) in some sense, the asymptotic normality of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}t(f,g) is proved under some regularity conditions. Bibliography: 14 titles.
引用
收藏
页码:5635 / 5649
页数:14
相关论文
共 8 条
[1]  
Hunt R.(1973)Weighted norm inequalities for the conjugate function and Hilbert transform Trans. Amer. Math. Soc. 176 227-251
[2]  
Muckenhoupt B.(1978)Asymptotic formulas for Toeplitz determinants Trans. Amer. Math. Soc. 239 33-65
[3]  
Wheeden R.(1962)Asymptotic behavior of eigenvalues of Toeplitz forms J. Math. Mech. 11 941-950
[4]  
Basor E.(1988)On bilinear forms in Gaussian random variables and Toeplitz matrices Prob. Theor. Relat. Fields 79 37-45
[5]  
Rosenblatt M.(1996)The accuracy of the least square method in the problem of estimation in a stationary noise Zap. Nauchn. Semin. POMI 228 294-299
[6]  
Avram F.(1982)Gaussian f-regular processes and asymptotic behavior of the likelihood function Zap. Nauchn. Semin. LOMI 119 203-239
[7]  
Solev V. N.(undefined)undefined undefined undefined undefined-undefined
[8]  
Solev V. N.(undefined)undefined undefined undefined undefined-undefined