A general decay result for a semilinear heat equation with past and finite history memories

被引:0
作者
Rui Yang
Zhong Bo Fang
机构
[1] Pusan National University,Department of Mathematics
[2] Ocean University of China,School of Mathematical Sciences
来源
Boundary Value Problems | / 2019卷
关键词
Heat equation; Past memory; Finite memory; General decay;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the initial-boundary value problem of the following semilinear heat equation with past and finite history memories: ut−Δu+∫0tg1(t−s)div(a1(x)∇u(s))ds+∫0+∞g2(s)div(a2(x)∇u(t−s))ds+f(u)=0,(x,t)∈Ω×[0,+∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} &u_{t}-\Delta u + \int _{0}^{t} {{g_{1}}(t - s) \operatorname{div}\bigl({a_{1}}(x) \nabla u(s)\bigr)\,ds} \\ &\quad{} + \int _{0}^{ + \infty } {{g_{2}}(s) \operatorname{div}\bigl({a_{2}}(x)\nabla u(t - s)\bigr)\,ds}+ f(u)=0, \quad(x,t)\in \varOmega \times [0,+\infty ), \end{aligned}$$ \end{document} where Ω is a bounded domain. Under suitable conditions on a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{1}$\end{document} and a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{2}$\end{document}, for a large class of relation functions g1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{1}$\end{document} and g2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{2}$\end{document}, we establish a general decay estimate, including the usual exponential and polynomial decay cases.
引用
收藏
相关论文
共 18 条
[1]  
Pao C.(1974)Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics J. Math. Anal. Appl. 48 470-492
[2]  
Yamada Y.(1984)Asymptotic stability for some systems of semilinear Volterra diffusion equations J. Differ. Equ. 52 295-326
[3]  
Bellout H.(1987)Blow-up of solutions of parabolic equation with nonlinear memory J. Differ. Equ. 70 42-68
[4]  
Cannon J.R.(1990)A priori SIAM J. Numer. Anal. 27 595-607
[5]  
Lin Y.(1992) error estimates for finite-element methods for nonlinear diffusion equations with memory Commun. Partial Differ. Equ. 17 1369-1385
[6]  
Yin H.M.(2005)Weak and classical solutions of some nonlinear Volterra integro-differential equations Prog. Nonlinear Differ. Equ. Appl. 64 351-356
[7]  
Messaoudi S.A.(2005)Blow-up of solutions of a semilinear heat equation with a visco-elastic term Abstr. Appl. Anal. 2005 87-94
[8]  
Messaoudi S.A.(2012)Blow-up of solutions of a semilinear heat equation with a memory term Appl. Math. Lett. 25 443-447
[9]  
Messaoudi S.A.(2014)A general decay result in a quasilinear parabolic system with viscoelastic term Math. Methods Appl. Sci. 37 148-156
[10]  
Tellab B.(2013)Global and blow-up of solutions for a quasilinear parabolic system with viscoelastic and source terms Abstr. Appl. Anal. 2013 748-760