One-sided empirical Bayes test for location parameter in Gamma distribution

被引:0
作者
Min Yuan
Qian Zhang
Lai-sheng Wei
机构
[1] Anhui Medical University,School of Public Health Administration
[2] University of Science and Technology of China,Department of Statistics and Finance
来源
Applied Mathematics-A Journal of Chinese Universities | 2018年 / 33卷
关键词
three parameter Gamma distribution; location parameter; one-sided empirical Bayes test; asymptotically optimality; convergence rate; 62C12; 62H15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we devote to constructing the one-sided empirical Bayes (EB) test for the location parameter in the Gamma distribution by nonparametric method. Under some mild conditions, we prove that the EB test is asymptotically optimal with the rate of the order O(n−δs2s+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({n^{ - \frac{{\delta s}}{{2s + 1}}}})$$\end{document}, where 1/2 ≤ δ < 1 and s > 1 is a given natural number. An example is also given to illustrate that the conditions of the main theorems are easily satisfied.
引用
收藏
页码:287 / 297
页数:10
相关论文
共 41 条
  • [1] Astrand M(2008)Empirical Bayes models for multiple probe type microarrays at the probe level BMC Bioinformatics 9 156-31
  • [2] Mostad P(2011)An empirical Bayes approach to estimating ordinal treatment effects Polit Anal 19 20-378
  • [3] Rudemo M(2003)Robbins, empirical Bayes and microarrays Ann Statist 31 366-853
  • [4] MAlvarez R(1978)Solutions to empirical Bayes squared error loss estimation problems Ann Statist 6 846-309
  • [5] Bailey D(1995)Empirical Bayes testing procedures in some nonexponential families using asymmetric Linex loss function J Statist Plann Inference 46 293-769
  • [6] Katz JN(1997)Empirical Bayes estimation of the truncation parameter with Linex loss Statist Sinica 7 755-1539
  • [7] Efron B(1971)Convergence rates in empirical Bayes two-action problems I: Discrete case Ann Math Statist 42 1521-947
  • [8] Fox R(1972)Convergence rates in empirical Bayes two-action problems II: Continuous Case Ann Math Statist 43 934-127
  • [9] Huang SY(2007)CLi, ARabinovic. Adjusting batch effects in microarray expression data using empirical Bayes methods Biostatistics 8 118-1642
  • [10] Huang SY(1988)On the coonvergence rates of empirical Bayes rules for two-action problems: Discrete case Ann Statist 16 1635-128