Global Regularity for the 2+1 Dimensional Equivariant Einstein-Wave Map System

被引:2
作者
Andersson L. [1 ]
Gudapati N. [2 ]
Szeftel J. [3 ]
机构
[1] Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam
[2] Department of Mathematics, Yale University, New Haven, CT
[3] Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris
基金
美国国家科学基金会;
关键词
Einstein’s equations; Wave maps;
D O I
10.1007/s40818-017-0030-z
中图分类号
学科分类号
摘要
In this paper we consider the equivariant 2+1 dimensional Einstein-wave map system and show that if the target satisfies the so called Grillakis condition, then global existence holds. In view of the fact that the 3+1 vacuum Einstein equations with a spacelike translational Killing field reduce to a 2+1 dimensional Einstein-wave map system with target the hyperbolic plane, which in particular satisfies the Grillakis condition, this work proves global existence for the equivariant class of such spacetimes. © 2017, Springer International Publishing AG.
引用
收藏
相关论文
共 36 条
[1]  
Andersson L., The global existence problem in general relativity, Gen. Relativ. Quantum Cosmol, (1999)
[2]  
Andersson L., The global existence problem in general relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 71-120, (2004)
[3]  
Ashtekar A., Varadarajan M., Striking property of the gravitational Hamiltonian, Phys. Rev. D (3), 50, 8, pp. 4944-4956, (1994)
[4]  
Beem J.K., Ehrlich P.E., Easley K.L., Global Lorentzian Geometry, Volume 202 of Monographs and Textbooks in Pure and Applied Mathematics, (1996)
[5]  
Berger B.K., Chrisciel P., Moncrief V., On “asymptotically flat” space-times with G-2 invariant Cauchy surfaces, Ann. Phys., 237, pp. 322-354, (1995)
[6]  
Bernal A.N., Sanchez M., Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions, Lett. Math. Phys., 77, pp. 183-197, (2006)
[7]  
Carot J., Some developments on axial symmetry, Class. Quantum Gravity, 17, pp. 2675-2690, (2000)
[8]  
Choquet-Bruhat Y., Geroch R., Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., 14, pp. 329-335, (1969)
[9]  
Christodoulou D., The instability of naked singularities in the gravitational collapse of a scalar field, Ann. Math. (2), 149, 1, pp. 183-217, (1999)
[10]  
Christodoulou D., Tahvildar-Zadeh A.S., On the regularity of spherically symmetric wave maps, Commun. Pure Appl. Math., 46, 7, pp. 1041-1091, (1993)