Ladder Invariants and Coherent States for Time-Dependent Non-Hermitian Hamiltonians

被引:0
作者
M. Zenad
F. Z. Ighezou
O. Cherbal
M. Maamache
机构
[1] USTHB,Faculty of Physics, Theoretical Physics Laboratory
[2] Université Ferhat Abbas Sétif 1,Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences
来源
International Journal of Theoretical Physics | 2020年 / 59卷
关键词
Coherent states; Invariant theory; Non-Hermitian Hamiltonians; Grassmann variables;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the Dodonov–Malkin–Man’ko–Trifonov (DMMT) invariant method (Malkin et al. Phys. Rev. D 2, 1371 1, J. Math. Phys. 14, 576 2; Dodonov et al. Int. J. Theor. Phys. 14, 37 3; Dodonov and Man’ko Phys. Rev. A 20, 550 4) to time-dependent pseudo-fermionic systems by introducing ladder invariant operators (time-dependent integrals of motion) which play the role of time-dependent pseudo-fermionic operators and constructing time-dependent pseudo-fermionic coherent states (PFCS) for such systems. As illustrative example, we study in details the time-dependent parity-time-symmetric two-level system under synchronous combined modulations. We explicitly determine time-dependent pseudo-fermionic operators and construct time-dependent PFCS for this physical system. We show that our approach can be extended to time-dependent pseudo-bosonic systems.
引用
收藏
页码:1214 / 1226
页数:12
相关论文
共 95 条
[1]  
Malkin IA(1970)Coherent states and transition probabilities in a time-dependent electromagnetic field Phys. Rev. D 2 1371-R33
[2]  
Man’ko VI(1973)Linear adiabatic invariants and coherent states J. Math. Phys. 14 576-undefined
[3]  
Trifonov DA(1975)Integrals of the motion, Green functions and coherent states of dynamical systems Int. J. Theor. Phys. 14 37-undefined
[4]  
Malkin IA(1979)Coherent states and the resonance of a quantum damped oscillator Phys. Rev. A 20 550-undefined
[5]  
Man’ko VI(1926)Der stetige Übergang von der Mikro-zur Makromechanik Naturwissenschaften 14 664-undefined
[6]  
Trifonov DA(1990)Coherent states: theory and some applications Rev. Mod. Phys. 6 2867-undefined
[7]  
Dodonov VV(2002)Nonclassical’states in quantum optics: asqueezed’review of the first 75 years J. Opt. B: Quantum Semiclass. Opt. 4 R1-undefined
[8]  
Malkin IA(2010)Invariants and coherent states for a nonstationary fermionic forced oscillator Phys. Lett. A 374 535-undefined
[9]  
Man’ko VI(1956)General theory of spin-wave interactions Phys. Rev. 102 1217-undefined
[10]  
Dodonov VV(1992)Quasi-hermitian operators in quantum mechanics and the variational principle Ann. Phys. 213 74-undefined