Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars

被引:0
|
作者
Ouissal Metoui-Ben Mahmoud
Imen Ben Slimene
Ons Talbi Zribi
Chedly Abdelly
Naceur Djébali
机构
[1] Center of Biotechnology of Borj Cedria,Laboratory of Extremophile Plants
[2] Center of Biotechnology of Borj Cedria,Laboratory of Bioactive Substances
来源
关键词
PGPR bacteria; Salinity; Water content;
D O I
暂无
中图分类号
学科分类号
摘要
There is an increasing interest for plant growth-promoting rhizobacteria (PGPR), particularly those associated with plants originating from extreme environments like saline habitats. We are assessing, here, whether the inoculation with three PGPR bacteria strains isolated from the rhizosphere of Hordeum maritimum naturally growing in saline soil could mitigate the impact of high salinity (200 mM of NaCl) on two contrasting local barley cultivars. The affinity of interaction between plant and bacteria in response to this environmental constraint was also evaluated. At 200 mM of NaCl, the strains S1 of Bacillus mojavensis and S2 of B. pumilus maintained the highest level of indole acetic acid production and the strain S3 of Pseudomonas fluorescens the highest number of viable cells. In the salt-sensitive cultivar Rihane, salinity reduced significantly plant biomass, chlorophyll and shoots water contents and enhanced malondialdehyde leaf content. Salt impact was also related to higher Na+ uptake. However, these parameters were slightly altered under salinity in the tolerant cultivar Kerkna which is likely due to its ability to transport Na+ to shoots for osmotic adjustment. The effect of bacteria inoculation on barley growth and tolerance to salt stress was dependent on the bacteria and cultivar genotypes and their interactions with the salinity of the soil. At 0 mM of NaCl the strain S2 increased significantly the plant fresh biomass of both cultivars. At 200 mM of NaCl, a positive effect on Rihane plant biomass was observed after S1 strain inoculation, while the Kerkna plant biomass did not change significantly after bacteria inoculation. Overall, the sensitive cultivar Rihane responds better to bacteria inoculation in comparison to the tolerant cultivar under control and salt conditions, which demonstrate a certain affinity of interaction between plant cultivar and bacterium strain modulated by the salinity of the soil. The multitude of soil–plant–microbe interactions, and in particular this affinity-effect observed between plants and rhizobacteria modulated by soil conditions, constitute a challenge for developing bio-promoting inoculum at the commercial level. This constraint can possibly be managed by developing an inoculum containing a consortium of PGPR bacterial strains having broad spectrum interactions with different plant cultivars that function optimally under several environmental constraints.
引用
收藏
相关论文
共 50 条
  • [41] Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight
    Della Monica, Ivana F.
    Villarreal, Arnoldo Wong
    Rubio, Pablo J. Stefanoni
    Vaca-Paulin, Rocio
    Yanez-Ocampo, Gustavo
    ARCHIVES OF MICROBIOLOGY, 2022, 204 (06)
  • [42] A Bibliometric Review of Plant Growth-Promoting Rhizobacteria in Salt-Affected Soils
    Ma, Xixi
    Pan, Jing
    Xue, Xian
    Zhang, Jun
    Guo, Qi
    AGRONOMY-BASEL, 2022, 12 (10):
  • [43] Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses
    Jochum, Michael D.
    McWilliams, Kelsey L.
    Borrego, Eli J.
    Kolomiets, Mike, V
    Niu, Genhua
    Pierson, Elizabeth A.
    Jo, Young-Ki
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [44] Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight
    Ivana F. Della Mónica
    Arnoldo Wong Villarreal
    Pablo J. Stefanoni Rubio
    Rocío Vaca-Paulín
    Gustavo Yañez-Ocampo
    Archives of Microbiology, 2022, 204
  • [45] Growth and Yield Response of Upland Rice to Application of Plant Growth-Promoting Rhizobacteria
    Harry Jay M. Cavite
    Ariel G. Mactal
    Editha V. Evangelista
    Jayvee A. Cruz
    Journal of Plant Growth Regulation, 2021, 40 : 494 - 508
  • [46] Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions
    Elsayed Mansour
    Hany A. M. Mahgoub
    Samir A. Mahgoub
    El-Sayed E. A. El-Sobky
    Mohamed I. Abdul-Hamid
    Mohamed M. Kamara
    Synan F. AbuQamar
    Khaled A. El-Tarabily
    El-Sayed M. Desoky
    Scientific Reports, 11
  • [47] Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions
    Mansour, Elsayed
    Mahgoub, Hany A. M.
    Mahgoub, Samir A.
    El-Sobky, El-Sayed E. A.
    Abdul-Hamid, Mohamed, I
    Kamara, Mohamed M.
    AbuQamar, Synan F.
    El-Tarabily, Khaled A.
    Desoky, El-Sayed M.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Impact of Plant Growth-Promoting Rhizobacteria Inoculation on the Physiological Response and Productivity Traits of Field-Grown Tomatoes in Hungary
    Nemeskeri, Eszter
    Horvath, Kitti Zsuzsanna
    Andryei, Bulgan
    Ilahy, Riadh
    Takacs, Sandor
    Nemenyi, Andras
    Pek, Zoltan
    Helyes, Lajos
    HORTICULTURAE, 2022, 8 (07)
  • [49] Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp.
    Vives-Peris, Vicente
    Gomez-Cadenas, Aurelio
    Maria Perez-Clemente, Rosa
    PLANT CELL REPORTS, 2018, 37 (11) : 1557 - 1569
  • [50] Maize response to inoculation with strains of plant growth-promoting bacteria
    Dartora, Janaina
    Guimaraes, Vandeir F.
    Menezes, Cid R. J.
    Freiberger, Mariangela B.
    Castoldi, Gustavo
    Goncalves, Edilaine. D. V.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2016, 20 (07): : 606 - 611