On different modes of order convergence and some applications

被引:0
作者
Kevin Abela
Emmanuel Chetcuti
Hans Weber
机构
[1] University of Malta,Department of Mathematics
[2] Università degli Studi di Udine,Dipartimento di Scienze Matematiche, Informatiche e Fisiche
来源
Positivity | 2022年 / 26卷
关键词
Order convergence; Order topology; Function space; Von Neumann algebra; Primar 06F30; Secondary 46L10;
D O I
暂无
中图分类号
学科分类号
摘要
We give a thorough overview of the different notions for order convergence that are found in the literature and provide a systematic comparison of the associated topologies. As an application of this study we prove a result related to the order topology on von Neumann algebras, complementing the study started in Chetcuti et al. (Stud. Math. 230:95-120, 2015). We show that for every atomic von Neumann algebra (not necessarily σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite) the restriction of the order topology to bounded parts of M coincides with the restriction of the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-strong topology s(M,M∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(M,M_*)$$\end{document}. We recall that the methods of Chetcuti et al. (Stud. Math. 230:95-120, 2015) rest heavily on the assumption of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finiteness. Furthermore, for a semi-finite measure space, we provide a complete picture of the relations between the topologies on L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} associated with the duality ⟨L1,L∞⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle L^1, L^\infty \rangle $$\end{document} and its order topology.
引用
收藏
相关论文
共 37 条
[1]  
Abramovich Yuri(2005)On order convergence of nets Positivity 9 287-292
[2]  
Sirotkin Gleb(1976)Gingras, convergence lattices Rocky Mt. J. Math. 6 85-104
[3]  
Armando R(2018)Star order and topologies on von Neumann algebras Mediterr. J. Math. 15 175-400
[4]  
Bohata Martin(1951)Lattices Proc. London Math. Soc. 52 386-2289
[5]  
BRennie C(2012)The order topology on the projection lattice of a Hilbert space Topol. Appl. 159 2280-228
[6]  
Buhagiar D(2021)Order topology on orthocomplemented posets of linear subspaces of a pre-Hilbert space Ann. Mat. Pura Appl. 200 211-236
[7]  
Chetcuti E(2020)The order topology on duals of Stud. Math. 254 219-120
[8]  
Weber H(2015)-algebras and von Neumann algebras Stud. Math. 230 95-68
[9]  
Buhagiar D(1980)The order topology for a von Neumann algebra Glasgow Math. J. 21 57-227
[10]  
Chetcuti E(1995)Order-topological lattices Topol. Appl. 61 215-146