The Fermi–Walker Derivative on the Spherical Indicatrix of Timelike Curve in Minkowski 3-Space

被引:0
作者
Fatma Karakuş
Yusuf Yaylı
机构
[1] Sinop University,Department of Mathematics Faculty of Arts and Sciences
[2] Ankara University,Department of Mathematics Faculty of Science
来源
Advances in Applied Clifford Algebras | 2016年 / 26卷
关键词
Primary 53B20; 53B21; 53B50; Secondary 53Z05; 53Z99; Fermi–Walker derivative; Fermi–Walker parallelism; Non-rotating frame; Tangent indicatrix; Principal Normal indicatrix; Binormal indicatrix; Helix; Slant Helix;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper Fermi–Walker derivative and Fermi–Walker parallelism and non-rotating frame concepts are given along the spherical indicatrix of a timelike curve in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}. First, we consider a timelike curve in the Minkowski space and investigate the Fermi–Walker derivative along the tangent. The concepts which Fermi–Walker derivative are analyzed along its tangent. Then, the Fermi–Walker derivative and its theorems are analyzed along the principal normal indicatrix and the binormal indicatrix of timelike curve in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 34 条
  • [1] The Fermi-Walker Derivative on the Spherical Indicatrix of Timelike Curve in Minkowski 3-Space
    Karakus, Fatma
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 199 - 215
  • [2] The Fermi-Walker Derivative on the Spherical Indicatrix of Spacelike Curve in Minkowski 3-Space
    Karakus, Fatma
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 625 - 644
  • [3] The Fermi-Walker Derivative on the Spherical Indicatrix of Spacelike Curve in Minkowski 3-Space
    Fatma Karakuş
    Yusuf Yayli
    Advances in Applied Clifford Algebras, 2016, 26 : 625 - 644
  • [4] The Fermi-Walker Derivative on the Spherical Indicatrix of a Space Curve
    Karakus, Fatma
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 183 - 197
  • [5] The Fermi-Walker Derivative on the Spherical Indicatrix of a Space Curve
    Fatma Karakuş
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2016, 26 : 183 - 197
  • [6] On the Surface the Fermi–Walker Derivative in Minkowski 3-Space
    Fatma Karakuş
    Yusuf Yayli
    Advances in Applied Clifford Algebras, 2016, 26 : 613 - 624
  • [7] On the Surface the Fermi-Walker Derivative in Minkowski 3-Space
    Karakus, Fatma
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (02) : 613 - 624
  • [8] The Fermi-Walker Derivative in Minkowski Space
    Karakus, Fatma
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1353 - 1368
  • [9] Characterizations of timelike slant helices in Minkowski 3-space
    Gok, Ismail
    Nurkan, Semra Kaya
    Ilarslan, Kazim
    Kula, Levent
    Altinok, Mesut
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 119 - 138
  • [10] On Timelike Rectifying Slant Helices in Minkowski 3-Space
    Altunkaya, Bulent
    Kula, Levent
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2018, 11 (01): : 17 - 25