Meromorphic functions that share a polynomial with their difference operators

被引:0
|
作者
Bingmao Deng
Dan Liu
Yongyi Gu
Mingliang Fang
机构
[1] South China Agricultural University,Institute of Applied Mathematics
[2] Guangzhou University,School of Mathematics and Information Science
来源
Advances in Difference Equations | / 2018卷
关键词
Uniqueness; Meromorphic functions; Difference operators; 30D35; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the following result: Let f be a nonconstant meromorphic function of finite order, p be a nonconstant polynomial, andc be a nonzero constant. If f, Δcf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{c}f$\end{document}, and Δcnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta_{c}^{n}f$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge 2$\end{document}) share ∞ and p CM, then f≡Δcf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f\equiv \Delta_{c}f$\end{document}. Our result provides a difference analogue of the result of Chang and Fang in 2004 (Complex Var. Theory Appl. 49(12):871–895, 2004).
引用
收藏
相关论文
共 50 条
  • [21] Meromorphic Functions Sharing four Values with their Difference Operators
    Xiao-Min Li
    Yan Liu
    Hong-Xun Yi
    Computational Methods and Function Theory, 2021, 21 : 317 - 341
  • [22] Higher order difference operators and uniqueness of meromorphic functions
    Fang, Mingliang
    Wang, Yuefei
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [23] Higher order difference operators and uniqueness of meromorphic functions
    Mingliang Fang
    Yuefei Wang
    Analysis and Mathematical Physics, 2021, 11
  • [24] Derivatives of Meromorphic Functions Sharing Polynomials with Their Difference Operators
    M.-H. Wang
    J.-F. Chen
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 444 - 458
  • [25] ZEROS AND FIXED POINTS OF DIFFERENCE OPERATORS OF MEROMORPHIC FUNCTIONS
    崔巍巍
    杨连忠
    ActaMathematicaScientia, 2013, 33 (03) : 773 - 780
  • [26] Uniqueness of meromorphic functions whose nonlinear differential polynomials share a polynomial
    Sahoo P.
    Karmakar H.
    Bollettino dell'Unione Matematica Italiana, 2016, 9 (4) : 469 - 481
  • [27] Derivatives of Meromorphic Functions Sharing Polynomials with Their Difference Operators
    Wang, M. -H.
    Chen, J. -F.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2023, 58 (06): : 444 - 458
  • [28] ZEROS AND FIXED POINTS OF DIFFERENCE OPERATORS OF MEROMORPHIC FUNCTIONS
    Cui, Weiwei
    Yang, Lianzhong
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 773 - 780
  • [29] Results on uniqueness of entire functions whose difference polynomials share a polynomial
    Sahoo, P.
    Karmakar, H.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (02): : 102 - 110
  • [30] On the uniqueness of meromorphic functions that share small functions on annuli
    Meng, Da Wei
    Liu, San Yang
    Lu, Nan
    AIMS MATHEMATICS, 2020, 5 (04): : 3223 - 3230