Degrees of Autostability for Linear Orders and Linearly Ordered Abelian Groups

被引:0
作者
N. A. Bazhenov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Algebra and Logic | 2016年 / 55卷
关键词
autostability; computable categoricity; index set; linear order; autostability spectrum; categoricity spectrum; degree of autostability; degree of categoricity; ordered Abelian group;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that every computable ordinal has a degree of autostability. We construct new examples of degrees of autostability in the class of linear orders and in the class of linearly ordered Abelian groups.
引用
收藏
页码:257 / 273
页数:16
相关论文
共 25 条
  • [1] Fokina EB(2010)Degrees of categoricity of computable structures Arch. Math. Log. 49 51-67
  • [2] Kalimullin I(2013)Degrees of categoricity and the hyperarithmetic hierarchy Notre Dame J. Form. Log. 54 215-231
  • [3] Miller R(2011)Degrees of autostability relative to strong constructivizations Trudy MIAN 274 119-129
  • [4] Csima BF(2009)-Computable categoricity for algebraic fields J. Symb. Log. 74 1325-1351
  • [5] Franklin JNY(2015)Computable categoricity for algebraic fields with splitting algorithms Trans. Am. Math. Soc. 367 3955-3980
  • [6] Shore RA(2016)Degrees that are not degrees of categoricity Notre Dame J. Form. Log. 57 389-398
  • [7] Goncharov SS(2016)Categoricity spectra for rigid structures Notre Dame J. Form. Log. 57 45-57
  • [8] Miller R(1981)Recursively categorical linear orderings Proc. Am. Math. Soc. 83 387-391
  • [9] Miller R(1986)Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees Trans. Am. Math. Soc. 298 497-514
  • [10] Shlapentokh A(1989)Generic copies of countable structures Ann. Pure Appl. Log. 42 195-205