Stability of Large Ekman Boundary Layers in Rotating Fluids

被引:0
作者
F. Rousset
机构
[1] Université de Nice,CNRS, Laboratoire J.A. Dieudonné
来源
Archive for Rational Mechanics and Analysis | 2004年 / 172卷
关键词
Boundary Layer; Approximate Solution; Nonlinear Stability; Smallness Condition; Energy Method;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate the stability of Ekman boundary layers for rotating fluids when the Ekman number and the Rossby number go to zero. More precisely, we prove that spectral stability implies linear and nonlinear stabilities of approximate solutions. In particular, we replace the smallness condition obtained with energy methods in [5] by a weaker spectral condition which is sharp.
引用
收藏
页码:213 / 245
页数:32
相关论文
共 15 条
[1]  
Alexander J-M.(1990)Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires J. Reine Angew. Math. 410 167-246
[2]  
Bony undefined(1981)undefined Ann. Sci. École Norm. Sup. 14 209-undefined
[3]  
Chemin undefined(2002)undefined ESAIM Control Optim. Calc. Var. 8 441-undefined
[4]  
Desjardins undefined(1999)undefined Nonlinearity 12 181-undefined
[5]  
Desjardins undefined(2003)undefined Ann. Inst. H. Poincaré Anal. Non Linéaire 20 87-undefined
[6]  
Gardner undefined(1998)undefined Comm. Pure Appl. Math. 51 797-undefined
[7]  
Gérard-Varet undefined(2003)undefined Comm. Partial Differential Equations 28 1605-undefined
[8]  
Grenier undefined(1997)undefined Comm. Partial Differential Equations 22 953-undefined
[9]  
Grenier undefined(2001)undefined Comm. Pure Appl. Math. 54 1343-undefined
[10]  
Guès undefined(2004)undefined Comm. Pure Appl. Math. 57 141-undefined