An upper bound for third Hankel determinant of starlike functions connected with k-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-$$\end{document}Fibonacci numbers

被引:0
作者
H. Özlem Güney
Sedat İlhan
Janusz Sokół
机构
[1] Dicle University,Department of Mathematics, Faculty of Science
[2] University of Rzeszów,Faculty of Mathematics and Natural Sciences
关键词
Univalent functions; Convex functions; Starlike functions; Subordination; ; -Fibonacci numbers; Primary 30C45; secondary 30C80;
D O I
10.1007/s40590-017-0190-6
中图分类号
学科分类号
摘要
In this paper, we investigate the third Hankel determinant problem in some classes of analytic functions in the open unit disc connected with k-Fibonacci numbers Fk,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{k,n}$$\end{document}(k>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k>0)$$\end{document}. For this, first, we prove a conjecture, posed in Güney et al. (2017), for sharp upper bound of the second Hankel determinant. In the sequel, we obtain another sharp coefficient bound which we apply in solving the problem of the third Hankel determinant for these functions. Finally, we give an upper bound for the third Hankel determinant in this class. The results presented in the present paper have been shown to generalize and improve some recent work of Sokół et al. (2017).
引用
收藏
页码:117 / 129
页数:12
相关论文
共 35 条
  • [1] Babalola KO(2007)On Inequal. Theory Appl. 6 17-1148
  • [2] Bansal D(2015) Hankel determinant for some classes of univalent functions J. Korean Math. Soc. 52 1139-2613
  • [3] Maharana S(2011)Third order Hankel determinant for certain univalent functions Comput. Math. Appl. 61 2605-560
  • [4] Prajapat JK(2000)Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers Am. Math. Mon. 107 557-89
  • [5] Dziok J(1933)The Hankel determinant of exponential polynomials J. Lond. Math. Soc. 8 85-5
  • [6] Raina RK(2006)Eine Bemerung über ungerade schlichte Functionen J. Inequal. Pure Appl. Math. 7 1-625
  • [7] Sokół J(2007)Coefficient inequality for a function whose derivative has a positive real part Int. J. Math. Anal. 1 619-12
  • [8] Ehrenborg R(1969)Hankel determinant for starlike and convex functions Proc. Am. Math. Soc. 20 8-11
  • [9] Fekete M(2001)A coefficient inequality for certain classes of analytic functions J. Integer. Seq. 4 1-346
  • [10] Szegö G(1976)The Hankel transform and some of its properties Trans. Am. Math. Soc. 223 337-739