Semi–Fredholm Spectrum and Weyl's Theorem for Operator Matrices

被引:0
作者
Xiao Hong Cao
Mao Zheng Guo
Bin Meng
机构
[1] Shanxi Normal University,College of Mathematics and Information Science
[2] Peking University,LMAM, School of Mathematical Sciences
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Semi–Fredholm operator; Fredholm operator; Spectrum; Weyl's theorem; 47A55; 47A53; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
When A ∈ B(H) and B ∈ B(K) are given, we denote by MC an operator acting on the Hilbert space H ⊕ K of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_{C} = {\left( {\begin{array}{*{20}c} {A} & {C} \\ {0} & {B} \\ \end{array} } \right)} .$$\end{document}In this paper, first we give the necessary and sufficient condition for MC to be an upper semi-Fredholm (lower semi–Fredholm, or Fredholm) operator for some C ∈ B(K,H). In addition, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ + } }} $$\end{document} (A) ={λ ∈ ℂ : A − λI is not an upper semi-Fredholm operator} be the upper semi–Fredholm spectrum of A ∈ B(H) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ - } }} $$\end{document} (A) = {λ ∈ ℂ : A − λI is not a lower semi–Fredholm operator} be the lower semi–Fredholm spectrum of A. We show that the passage from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ ±} }} {\left( A \right)} \cap \sigma _{{SF_{ ±} }} {\left( B \right)}\;{\text{to}}\;\sigma_{{SF_{±} }} {\left( {M_{C} } \right)} $$\end{document} is accomplished by removing certain open subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} $$\end{document} from the former, that is, there is an equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( A \right)} \cup \sigma _{{SF_{ ±} }} {\left( B \right)} = \sigma_{{SF_{±} }} {\left( {M_{C} } \right)} \cup {\fancyscript G},$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript G}$$\end{document}is the union of certain of the holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( {M_{C} } \right)} $$\end{document} which happen to be subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma_{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} .$$\end{document}Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a–Weyl's theorem and a–Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
引用
收藏
页码:169 / 178
页数:9
相关论文
共 50 条
  • [31] Weyl's theorem for analytically hyponormal operators
    Cao, XH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 (1-3) : 229 - 238
  • [32] Weyl's theorem for algebraically class A operators
    Mecheri, Salah
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (02) : 239 - 246
  • [33] Weyl’s Theorem and Perturbations
    Mourad Oudghiri
    Integral Equations and Operator Theory, 2005, 53 : 535 - 545
  • [34] A note on Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (10) : 2977 - 2984
  • [35] Weyl's theorem and perturbations
    Oudghiri, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (04) : 535 - 545
  • [36] Perturbations and Weyl's theorem
    Duggal, B. P.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2899 - 2905
  • [37] Left-Right α -Fredholm and α -Weyl Operators with Application to the Weighted Spectrum
    Messaoud, Rim
    Ghanmi, Boulbaba
    Ghnimi, Saifeddine
    Missaoui, Amira
    FILOMAT, 2022, 36 (09) : 2939 - 2945
  • [38] Generalized Drazin spectrum of operator matrices
    Zhang Shi-fang
    Zhong Huai-jie
    Lin Li-qiong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (02) : 162 - 170
  • [39] WEYL'S THEOREM AND ITS PERTURBATIONS FOR THE FUNCTIONS OF OPERATORS
    Cao, Xiaohong
    Dong, Jiong
    Liu, Junhui
    OPERATORS AND MATRICES, 2018, 12 (04): : 1145 - 1157
  • [40] The Intersection of Upper and Lower Semi-Browder Spectrum of Upper-Triangular Operator Matrices
    Zhang, Shifang
    Zhong, Huaijie
    Long, Long
    ABSTRACT AND APPLIED ANALYSIS, 2013,