Semi–Fredholm Spectrum and Weyl's Theorem for Operator Matrices

被引:0
作者
Xiao Hong Cao
Mao Zheng Guo
Bin Meng
机构
[1] Shanxi Normal University,College of Mathematics and Information Science
[2] Peking University,LMAM, School of Mathematical Sciences
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Semi–Fredholm operator; Fredholm operator; Spectrum; Weyl's theorem; 47A55; 47A53; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
When A ∈ B(H) and B ∈ B(K) are given, we denote by MC an operator acting on the Hilbert space H ⊕ K of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_{C} = {\left( {\begin{array}{*{20}c} {A} & {C} \\ {0} & {B} \\ \end{array} } \right)} .$$\end{document}In this paper, first we give the necessary and sufficient condition for MC to be an upper semi-Fredholm (lower semi–Fredholm, or Fredholm) operator for some C ∈ B(K,H). In addition, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ + } }} $$\end{document} (A) ={λ ∈ ℂ : A − λI is not an upper semi-Fredholm operator} be the upper semi–Fredholm spectrum of A ∈ B(H) and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ - } }} $$\end{document} (A) = {λ ∈ ℂ : A − λI is not a lower semi–Fredholm operator} be the lower semi–Fredholm spectrum of A. We show that the passage from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{SF_{ ±} }} {\left( A \right)} \cap \sigma _{{SF_{ ±} }} {\left( B \right)}\;{\text{to}}\;\sigma_{{SF_{±} }} {\left( {M_{C} } \right)} $$\end{document} is accomplished by removing certain open subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} $$\end{document} from the former, that is, there is an equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( A \right)} \cup \sigma _{{SF_{ ±} }} {\left( B \right)} = \sigma_{{SF_{±} }} {\left( {M_{C} } \right)} \cup {\fancyscript G},$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript G}$$\end{document}is the union of certain of the holes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma_{{SF_{± } }} {\left( {M_{C} } \right)} $$\end{document} which happen to be subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma_{{SF_{ - } }} {\left( A \right)} \cap \sigma_{{SF_{ + } }} {\left( B \right)} .$$\end{document}Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a–Weyl's theorem and a–Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
引用
收藏
页码:169 / 178
页数:9
相关论文
共 50 条
  • [21] Weyl spectra and Weyl's theorem
    Cao, XH
    Guo, MZ
    Meng, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) : 758 - 767
  • [22] On Weyl's Theorem for Functions of Operators
    Jiong DONG
    Xiao Hong CAO
    Lei DAI
    Acta Mathematica Sinica,English Series, 2019, (08) : 1367 - 1376
  • [23] On Weyl’s Theorem for Functions of Operators
    Jiong Dong
    Xiao Hong Cao
    Lei Dai
    Acta Mathematica Sinica, English Series, 2019, 35 : 1367 - 1376
  • [24] Consistent invertibility and Weyl's theorem
    Cao, Xiaohong
    Zhang, Hejia
    Zhang, Yanhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 258 - 264
  • [25] Weyl's theorem in several variables
    Han, Young Min
    Kim, An-Hyun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 538 - 542
  • [26] On Weyl's Theorem for Functions of Operators
    Dong, Jiong
    Cao, Xiao Hong
    Dai, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) : 1367 - 1376
  • [27] Analytically class A operators and Weyl's theorem
    Cao, Xiaohong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 795 - 803
  • [28] Weyl's Theorem for Functions of Operators and Approximation
    Li, Chun Guang
    Zhu, Sen
    Feng, You Ling
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (04) : 481 - 497
  • [29] Weyl's theorem for paranormal closed operators
    Bala, Neeru
    Ramesh, G.
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 567 - 582
  • [30] Weyl's theorem for analytically hyponormal operators
    Cao, XH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 (1-3) : 229 - 238