Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination

被引:2
|
作者
Huaibo Huang
Ran He
Zhenan Sun
Tieniu Tan
机构
[1] University of Chinese Academy of Sciences,School of Artificial Intelligence
[2] CASIA,Center for Research on Intelligent Perception and Computing
[3] CASIA,National Laboratory of Pattern Recognition
[4] CAS,Center for Excellence in Brain Science and Intelligence Technology
来源
International Journal of Computer Vision | 2019年 / 127卷
关键词
Face hallucination; Super-resolution; Wavelet transform; Generative adversarial network; Face recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Most modern face hallucination methods resort to convolutional neural networks (CNN) to infer high-resolution (HR) face images. However, when dealing with very low-resolution (LR) images, these CNN based methods tend to produce over-smoothed outputs. To address this challenge, this paper proposes a wavelet-domain generative adversarial method that can ultra-resolve a very low-resolution (like 16×16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times 16$$\end{document} or even 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document}) face image to its larger version of multiple upscaling factors (2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} to 16×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times $$\end{document}) in a unified framework. Different from the most existing studies that hallucinate faces in image pixel domain, our method firstly learns to predict the wavelet information of HR face images from its corresponding LR inputs before image-level super-resolution. To capture both global topology information and local texture details of human faces, a flexible and extensible generative adversarial network is designed with three types of losses: (1) wavelet reconstruction loss aims to push wavelets closer with the ground-truth; (2) wavelet adversarial loss aims to generate realistic wavelets; (3) identity preserving loss aims to help identity information recovery. Extensive experiments demonstrate that the presented approach not only achieves more appealing results both quantitatively and qualitatively than state-of-the-art face hallucination methods, but also can significantly improve identification accuracy for low-resolution face images captured in the wild.
引用
收藏
页码:763 / 784
页数:21
相关论文
共 50 条
  • [31] Face hallucination using PCA in wavelet domain
    Abdu, Rahiman, V
    Jiji, C., V
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 180 - 187
  • [32] Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised Multi-scale Generative Adversarial Network
    Cui, Jianan
    Gong, Kuang
    Han, Paul
    Liu, Huafeng
    Li, Quanzheng
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 50 - 59
  • [33] End-to-end latent fingerprint enhancement using multi-scale Generative Adversarial Network
    Pramukha, R. N.
    Akhila, P.
    Koolagudi, Shashidhar G.
    PATTERN RECOGNITION LETTERS, 2024, 184 : 169 - 175
  • [34] Multi-scale RGB and NIR image Cross-fusion based on Generative Adversarial Network
    Xiang, Sen
    Hu, Zishan
    Deng, Huiping
    Wu, Jin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4172 - 4177
  • [35] An Unsupervised Multi-scale Generative Adversarial Network for Remote Sensing Image Pan-Sharpening
    Wang, Yajie
    Xie, Yanyan
    Wu, Yanyan
    Liang, Kai
    Qiao, Jilin
    MULTIMEDIA MODELING, MMM 2022, PT II, 2022, 13142 : 356 - 368
  • [36] SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution
    Peng, Chengyang
    Jin, Shaohua
    Bian, Gang
    Cui, Yang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (07)
  • [37] Tiny Face Hallucination via Boundary Equilibrium Generative Adversarial Networks
    Shao, Wen-Ze
    Xu, Jing-Jing
    Chen, Long
    Ge, Qi
    Wang, Li-Qian
    Bao, Bing-Kun
    Li, Hai-Bo
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [38] Face Reconstruction with Generative Adversarial Network
    Putra, Dino Hariatma
    Basaruddin, T.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING (ICMLSC 2019), 2019, : 181 - 185
  • [39] Laplacian Generative Adversarial Networks for Multi-Scale Super-Resolution
    Xia, Hongrui
    Yang, Yingyun
    Hu, Xiao
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1543 - 1547
  • [40] Face photo-drawing conversion based on multi-scale feature-enhanced generative adversarial networks
    Wang, Po
    Ya Ermaimaiti, Yi Lihamu
    IMAGING SCIENCE JOURNAL, 2025, 73 (03) : 283 - 298