Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination

被引:2
|
作者
Huaibo Huang
Ran He
Zhenan Sun
Tieniu Tan
机构
[1] University of Chinese Academy of Sciences,School of Artificial Intelligence
[2] CASIA,Center for Research on Intelligent Perception and Computing
[3] CASIA,National Laboratory of Pattern Recognition
[4] CAS,Center for Excellence in Brain Science and Intelligence Technology
来源
International Journal of Computer Vision | 2019年 / 127卷
关键词
Face hallucination; Super-resolution; Wavelet transform; Generative adversarial network; Face recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Most modern face hallucination methods resort to convolutional neural networks (CNN) to infer high-resolution (HR) face images. However, when dealing with very low-resolution (LR) images, these CNN based methods tend to produce over-smoothed outputs. To address this challenge, this paper proposes a wavelet-domain generative adversarial method that can ultra-resolve a very low-resolution (like 16×16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times 16$$\end{document} or even 8×8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\times 8$$\end{document}) face image to its larger version of multiple upscaling factors (2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} to 16×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times $$\end{document}) in a unified framework. Different from the most existing studies that hallucinate faces in image pixel domain, our method firstly learns to predict the wavelet information of HR face images from its corresponding LR inputs before image-level super-resolution. To capture both global topology information and local texture details of human faces, a flexible and extensible generative adversarial network is designed with three types of losses: (1) wavelet reconstruction loss aims to push wavelets closer with the ground-truth; (2) wavelet adversarial loss aims to generate realistic wavelets; (3) identity preserving loss aims to help identity information recovery. Extensive experiments demonstrate that the presented approach not only achieves more appealing results both quantitatively and qualitatively than state-of-the-art face hallucination methods, but also can significantly improve identification accuracy for low-resolution face images captured in the wild.
引用
收藏
页码:763 / 784
页数:21
相关论文
共 50 条
  • [21] Multi-Scale Attention Generative Adversarial Network for Single Image Rain Removal
    Pattern Recognition and Image Analysis, 2022, 32 : 436 - 447
  • [22] Image compressed sensing using multi-scale residual generative adversarial network
    Tian, Jinpeng
    Yuan, Wenjie
    Tu, Yunxuan
    VISUAL COMPUTER, 2022, 38 (12) : 4193 - 4202
  • [23] Multi-scale generative adversarial network for image compressed sensing and reconstruction algorithm
    Zeng C.-Y.
    Yan K.
    Wang Z.-F.
    Wang Z.-H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2923 - 2931
  • [24] Multi-scale information transport generative adversarial network for human pose transfer ☆
    Zhang, Jinsong
    Lai, Yu-Kun
    Ma, Jian
    Li, Kun
    DISPLAYS, 2024, 84
  • [25] Face Hallucination via Multi-Scale Structure Prior Learning
    Yao, Yuexi
    Lu, Tao
    Zhao, Kanghui
    Zhang, Yanduo
    Wang, Yu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (01) : 92 - 96
  • [26] Face Hallucination via Multi-Scale Structure Prior Learning
    Yao, Yuexi
    Lu, Tao
    Zhao, Kanghui
    Zhang, Yanduo
    Wang, Yu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [27] Multi-scale self-attention generative adversarial network for pathology image restoration
    Liang, Meiyan
    Zhang, Qiannan
    Wang, Guogang
    Xu, Na
    Wang, Lin
    Liu, Haishun
    Zhang, Cunlin
    VISUAL COMPUTER, 2023, 39 (09) : 4305 - 4321
  • [28] Multi-scale Generative Adversarial Network for Person Re-identification under Occlusion
    Yang W.-X.
    Yan Y.
    Chen S.
    Zhang X.-K.
    Wang H.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (07): : 1943 - 1958
  • [29] Generative Adversarial Network Based on Multi-scale Dense Feature Fusion for Image Dehazing
    Lian J.
    Chen S.
    Ding K.
    Li L.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (11): : 1591 - 1598
  • [30] Multi-scale self-attention generative adversarial network for pathology image restoration
    Meiyan Liang
    Qiannan Zhang
    Guogang Wang
    Na Xu
    Lin Wang
    Haishun Liu
    Cunlin Zhang
    The Visual Computer, 2023, 39 : 4305 - 4321