Non-Commutative Algebras and Quantum Structures

被引:0
|
作者
Anatolij Dvurečenskij
Thomas Vetterlein
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] & Scaron;tefánikova 49,Fac. Comp. Sci. I
[3] University of Dortmund,undefined
来源
International Journal of Theoretical Physics | 2004年 / 43卷
关键词
pseudo-effect algebra; pseudo MV-algebras; po-group; unital po-group; unital ℓ-group; compatibility; block; state; extremal state;
D O I
暂无
中图分类号
学科分类号
摘要
We present a survey on pseudo-effect algebras and pseudo MV-algebras, which generalize effect algebras and MV-algebras by dropping the assumption on commutativity. A non-commutative logic is nowadays used even in programming languages. We show when a pseudo-effect algebra E is an interval in a unital po-group. This is possible, e.g. if E satisfies a Riesz-type decomposition property, i.e. another kind of distributivity with respect to addition. Every pseudo MV-algebra is an interval in a unital ℓ-group. We study a case when compatibility can be expressed by a pseudo MV-structure, i.e. when E can be covered by blocks being pseudo MV-algebras. Finally, we study the state space of such structures.
引用
收藏
页码:1599 / 1612
页数:13
相关论文
共 50 条
  • [31] On the Structure of Pseudo BL-algebras and Pseudo Hoops in Quantum Logics
    Dvurecenskij, A.
    Giuntini, R.
    Kowalski, T.
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1519 - 1542
  • [32] Smearing of Observables and Spectral Measures on Quantum Structures
    Dvurecenskij, Anatolij
    FOUNDATIONS OF PHYSICS, 2013, 43 (02) : 210 - 224
  • [33] Small Quantum Structures with Small State Spaces
    Mirko Navara
    International Journal of Theoretical Physics, 2008, 47 : 36 - 43
  • [34] STATELESS QUANTUM STRUCTURES AND EXTREMAL GRAPH THEORY
    Voracek, Vaclav
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 86 (02) : 175 - 185
  • [35] Fuzzy set representations of some quantum structures
    Dvurecenskij, A
    FUZZY SETS AND SYSTEMS, 1999, 101 (01) : 67 - 78
  • [36] Smearing of Observables and Spectral Measures on Quantum Structures
    Anatolij Dvurečenskij
    Foundations of Physics, 2013, 43 : 210 - 224
  • [37] Demonstrating quantum computation for quasiparticle band structures
    Ohgoe, Takahiro
    Iwakiri, Hokuto
    Kohda, Masaya
    Ichikawa, Kazuhide
    Nakagawa, Yuya O.
    Valencia, Hubert Okadome
    Koh, Sho
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [38] Toward scalable III-nitride quantum dot structures for quantum photonics
    Ku, Pei-Cheng
    Sarwar, Tuba
    Demory, Brandon
    Teng, Chu-Hsiang
    SEMICONDUCTOR QUANTUM SCIENCE AND TECHNOLOGY, 2020, 105 : 1 - 27
  • [40] Quantum spin Hall effect in α-Sn/CdTe(001) quantum-well structures
    Kuefner, Sebastian
    Matthes, Lars
    Bechstedt, Friedhelm
    PHYSICAL REVIEW B, 2016, 93 (04)