On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension

被引:0
|
作者
Chebarykov M.S. [1 ]
机构
[1] Rubtsovsk Industrial Institute
关键词
homogeneous Riemannian manifold; left-invariant Riemannian metric; Lie algebra; Lie group; the Ricci curvature;
D O I
10.3103/S1055134411020015
中图分类号
学科分类号
摘要
The Ricci curvature of solvable metric Lie algebras is studied. In particular, we prove that the Ricci operator of any metric nonunimodular solvable Lie algebra of dimension not exceeding 6 has at least two negative eigenvalues, that generalizes the known results. © 2011 Allerton Press, Inc.
引用
收藏
页码:81 / 99
页数:18
相关论文
共 50 条
  • [1] The signature of the Ricci curvature of left-invariant Riemannian metrics on four-dimensional Lie groups. The nonunimodular case
    Kremlev A.G.
    Nikonorov Y.G.
    Siberian Advances in Mathematics, 2010, 20 (1) : 1 - 57
  • [2] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    Klepikov, P. N.
    Rodionov, E. D.
    Khromova, O. P.
    RUSSIAN MATHEMATICS, 2022, 66 (05) : 65 - 69
  • [3] Three-Dimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semisymmetric Metric Connection
    P. N. Klepikov
    E. D. Rodionov
    O. P. Khromova
    Russian Mathematics, 2022, 66 : 65 - 69
  • [4] On the problem of classifying solvable Lie algebras having small codimensional derived algebras
    Le, Vu A.
    Cao, Hai T. T.
    Duong, Hoa Q.
    Nguyen, Tuan A.
    Vo, Thieu N.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3775 - 3793
  • [5] Local derivations on Solvable Lie algebras
    Ayupov, Sh A.
    Khudoyberdiyev, A. Kh
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07) : 1286 - 1301
  • [6] NILPOTENT DECOMPOSITION OF SOLVABLE LIE ALGEBRAS
    Qi, Liqun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1041 - 1054
  • [7] Representations of filtered solvable Lie algebras
    Panov, A. N.
    SBORNIK MATHEMATICS, 2012, 203 (01) : 75 - 87
  • [8] On nilpotent and solvable Lie algebras of derivations
    Makedonskyi, Ie O.
    Petravchuk, A. P.
    JOURNAL OF ALGEBRA, 2014, 401 : 245 - 257
  • [9] A Study on the Centroid of a Class of Solvable Lie Algebras
    Yu, Demin
    Jiang, Chan
    Ma, Jiejing
    SYMMETRY-BASEL, 2023, 15 (07):
  • [10] Quivers and Three Dimensional Solvable Lie Algebras
    Pike, Jeffrey
    JOURNAL OF LIE THEORY, 2017, 27 (03) : 707 - 726