OPC Lattices and Congruence Heredity

被引:0
|
作者
John W. Snow
机构
[1] Sam Houston State University,Department of Mathematics and Statistics
来源
Algebra universalis | 2008年 / 58卷
关键词
08A30; 06B15; congruence lattice; primitive positive formula; hereditary congruence lattice; order polynomially complete lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{A}}$$ \end{document} is a finite algebra which satisfies a nontrivial idempotent Mal’cev condition, and if Con\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{A}}$$ \end{document} contains a copy of an order polynomially complete lattice other than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{2}}$$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{M}}_{3}$$ \end{document}, or Con\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\mathbb{Z}^{3}_{2})$$ \end{document}, then Con\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{A}}$$ \end{document} is not hereditary.
引用
收藏
页码:59 / 71
页数:12
相关论文
共 50 条