Picard and Adomian decomposition methods for a quadratic integral equation of fractional order

被引:0
|
作者
A. M. A. El-Sayed
H. H. G. Hashem
E. A. A. Ziada
机构
[1] Alexandria University,Faculty of Science
[2] Qassim University,Faculty of Science
[3] Delta University for Science and Technology,Faculty of Engineering
来源
关键词
Quadratic integral equation; Picard method; Adomian method; Continuous unique solution; Fractional-order integration; Convergence analysis; Error analysis; 26A33; 26A18; 39B12;
D O I
暂无
中图分类号
学科分类号
摘要
We study two analytical methods: the classical method of successive approximations (Picard method) (Curtain and Pritchard in Functional analysis in modern applied mathematics, Academic press, London, 1977) and Adomian method which gives the solution as a series (see Adomian in Stochastic system, Academic press, New York, 1983; Adomian in Nonlinear stochastic operator equations. Academic press, San Diego, 1986; Adomian in Nonlinear stochastic systems: theory and applications to physics. Kluwer, Dordrecht, 1989; Adomian et al. in J Math Comput 23:17–23, 1992; Abbaoui and Cherruault in Comput Math Appl 28:103–109, 1994; Adomian in Solving frontier problems of physics: the decomposition method. Kluwer, Dordrecht, 1995; Cherruault in Kybernetes 18:31–38, 1989; Cherruault et al. in Int J Biomed Comput 38:89–93, 1995). The existence and uniqueness of the solution and the convergence will be discussed for each method and some examples will be studied.
引用
收藏
页码:95 / 109
页数:14
相关论文
共 50 条
  • [1] Picard and Adomian decomposition methods for a quadratic integral equation of fractional order
    El-Sayed, A. M. A.
    Hashem, H. H. G.
    Ziada, E. A. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (01): : 95 - 109
  • [2] Picard and Adomian decomposition methods for a fractional quadratic integral equation via ζ-generalized ξ-fractional integral.
    Abdulqader, Alan Jalal
    Redhwan, Saleh S.
    Ali, Ali Hasan
    Bazighifan, Omar
    Alabdala, Awad T.
    Iraqi Journal for Computer Science and Mathematics, 2024, 5 (03): : 170 - 180
  • [3] Picard and Adomian methods for quadratic integral equation
    El-Sayed, A. M. A.
    Hashem, H. H. G.
    Ziada, E. A. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (03): : 447 - 463
  • [4] Picard and adomian methods for quadratic integral equation
    El-Sayed A.M.A.
    Hashem H.H.G.
    Ziada E.A.A.
    Computational and Applied Mathematics, 2010, 29 (03) : 447 - 463
  • [5] Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods
    Ziada, Eman A. A.
    Hashem, Hind
    Al-Jaser, Asma
    Moaaz, Osama
    Botros, Monica
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11): : 5943 - 5965
  • [6] Monotonic solutions of a quadratic integral equation of fractional order
    Banas, Jozef
    Rzepka, Beata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 1371 - 1379
  • [7] Monotonic solutions for a quadratic integral equation of fractional order
    El-Sayed, A. M. A.
    Al-Issa, Sh M.
    AIMS MATHEMATICS, 2019, 4 (03): : 821 - 830
  • [8] Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators
    Yan, Sheng-Ping
    Jafari, Hossein
    Jassim, Hassan Kamil
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [9] Solution of Quadratic Integral Equations by the Adomian Decomposition Method
    Fu, Shou-Zhong
    Wang, Zhong
    Duan, Jun-Sheng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 92 (04): : 369 - 385
  • [10] Solving a multi-order fractional differential equation using adomian decomposition
    Daftardar-Gejji, Varsha
    Jafari, Hossein
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 541 - 548