W*-rigidity for the von Neumann algebras of products of hyperbolic groups

被引:0
作者
Ionut Chifan
Rolando de Santiago
Thomas Sinclair
机构
[1] The University of Iowa,Department of Mathematics
[2] Department of Mathematics Purdue University,undefined
来源
Geometric and Functional Analysis | 2016年 / 26卷
关键词
Hyperbolic Group; Index Subgroup; Irreducible Lattice; Nonzero Projection; Index Inclusion;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if Γ=Γ1×⋯×Γn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma = \Gamma_1\times\dotsb\times \Gamma_n}$$\end{document} is a product of n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm n} \geq 2}$$\end{document} non-elementary ICC hyperbolic groups then any discrete group Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda}$$\end{document} which is W∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^*}$$\end{document}-equivalent to Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma}$$\end{document} decomposes as a direct product of n ICC groups and does not decompose as a direct product of k ICC groups when n≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm n} \not= {\rm k}}$$\end{document}. This gives a group-level strengthening of Ozawa and Popa’s unique prime decomposition theorem by removing all assumptions on the group Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda}$$\end{document}. This result in combination with Margulis’ normal subgroup theorem allows us to give examples of lattices in the same Lie group which do not generate stably equivalent II1 factors.
引用
收藏
页码:136 / 159
页数:23
相关论文
共 23 条
  • [1] Berbec M.(2014)W*-superrigidity for group von Neumann algebras of left-right wreath products Proc. Lond. Math. Soc. 108 1116-1152
  • [2] Vaes S.(2011)On a question of D Shylakhtenko Proc. Am. Math. Soc. 139 1091-1093
  • [3] Chifan I.(2013)On the structural theory of Ann. Sci. Éc. Norm. Sup. 46 1-33
  • [4] Ioana A.(2013) factors of negatively curved groups Actions by product groups. Adv. Math. 245 208-236
  • [5] Chifan I.(1976)On the structural theory of Ann. Math. 104 73-115
  • [6] Sinclair T.(1989) factors of negatively curved groups, II Invent. Math. 96 507-549
  • [7] Chifan I.(1993)Classification of injective factors Duke Math. J. 69 97-119
  • [8] Sinclair T.(1999)Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one Ann. Math. 150 1059-1081
  • [9] Udrea B.(2012)Free products of hyperfinite von Neumann algebras and free dimension Geom. Funct. Anal. 22 699-732
  • [10] Connes A.(1979)Gromov’s measure equivalence and rigidity of higher rank lattices Func. Anal. Appl. 13 178-187