Weak Topological Conjugacy Via Character of Recurrence on Impulsive Dynamical Systems

被引:0
|
作者
E. M. Bonotto
D. P. Demuner
G. M. Souto
机构
[1] Universidade de São Paulo-Campus de São Carlos,Instituto de Ciências Matemáticas e de Computação
[2] Universidade Federal do Espírito Santo,undefined
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2019年 / 50卷
关键词
Impulsive dynamical systems; Topological conjugacy; Character of recurrence;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we define the concept of weak topological conjugacy and we establish sufficient conditions to obtain this kind of topological conjugacy between two limit sets. We use the character of recurrence to obtain the results.
引用
收藏
页码:399 / 417
页数:18
相关论文
共 50 条
  • [21] Relaxing conjugacy to fit modeling in dynamical systems
    Skufca, Joseph D.
    Bollt, Erik M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [22] On linear topological conjugacy of Lur'e systems
    Wu, CW
    Chua, LO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (02): : 158 - 161
  • [23] HOPF BIFURCATIONS IN DYNAMICAL SYSTEMS VIA ALGEBRAIC TOPOLOGICAL METHOD
    Jawarneh, Ibrahim
    Altawallbeh, Zuhier
    MATEMATICKI VESNIK, 2023, 75 (03): : 216 - 224
  • [24] Relative weak mixing of W*-dynamical systems via joinings
    Duvenhage, Rocco
    King, Malcolm
    STUDIA MATHEMATICA, 2019, 247 (01) : 63 - 84
  • [25] Dimensions for recurrence times:: Topological and dynamical properties
    Penné, V
    Saussol, B
    Vaienti, S
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) : 783 - 798
  • [26] Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control
    Yang, Huilan
    Wang, Xin
    Zhong, Shouming
    Shu, Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 75 - 85
  • [27] Lag synchronization of nonlinear dynamical systems via asymmetric saturated impulsive control
    Wu, Hongjuan
    Li, Chuandong
    He, Zhilong
    Wang, Yinuo
    He, Yingying
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [28] The complexity of topological conjugacy of pointed Cantor minimal systems
    Burak Kaya
    Archive for Mathematical Logic, 2017, 56 : 215 - 235
  • [29] Stability conditions for impulsive dynamical systems
    Dashkovskiy, Sergey
    Slynko, Vitalii
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2022, 34 (01) : 95 - 128
  • [30] The complexity of topological conjugacy of pointed Cantor minimal systems
    Kaya, Burak
    ARCHIVE FOR MATHEMATICAL LOGIC, 2017, 56 (3-4) : 215 - 235