Effect of relative air humidity on photoacoustic aerosol absorption measurements in the near-ground atmospheric layer

被引:4
作者
Kozlov V.S. [1 ]
Panchenko M.V. [1 ]
Tikhomirov A.B. [1 ]
Tikhomirov B.A. [1 ]
Shmargunov V.P. [1 ]
机构
[1] Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, pl. Akademika Zueva 1, Tomsk
基金
俄罗斯基础研究基金会;
关键词
Black Carbon; Atmospheric Aerosol; Aerosol Absorption; Aerosol Filter; Water Vapor Molecule;
D O I
10.1134/S1024856011050101
中图分类号
学科分类号
摘要
The paper discusses wintertime synchronous near-ground measurements of the aerosol absorption coefficient at wavelengths of 532 and 1064 nm and the black carbon mass concentration by pulsed photoacoustic (PA) spectroscopy and optical aethalometry, respectively. It was found that the signal of the pulsed PA spectrometer decreases monotonically, by 30–40% on average, as the relative air humidity increases from 30 to 90%. Analysis of the data has shown that the PA method is efficient for studying the absorption of laser radiation in the range of low humidity values, i.e., for measurements of the aerosol absorption coefficient of “dry” carbonaceous particles. Correctness of the aerosol absorption measurements for increased relative air humidity (60–90%) can be improved through a sensitivity correction (additional calibration) of PA spectrometers. © 2011, Pleiades Publishing, Ltd.
引用
收藏
页码:487 / 491
页数:4
相关论文
共 18 条
  • [1] Mikhailov E.F., Vlasenko S.S., Kiselev A.A., Ryshkevich G.I., Restructuring Factors of Soot Particles, Izv. RAN. Fiz. Atmos. Okeana, 34, pp. 345-356, (1998)
  • [2] Colbeck I., Appleby L., Hardman E.J., Harrison R.M., The Optical Properties and Morphology of Cloud-Processed Carbonaceous Smoke, Aerosol Sci., 21, pp. 527-538, (1990)
  • [3] Panchenko M.V., Sviridenkov M.A., Terpugova S.A., Kozlov V.S., Active Spectral Nephelometry as a Method for the Study of Submicron Atmospheric Aerosols, Opt. Atmos. Okeana, 17, pp. 428-436, (2004)
  • [4] Rozenberg G.V., On the Nature of Aerosol Absorption in the Short-Wave Region of the Spectrum, Izv. AN SSSR, Fiz. Atmos. Okeana, 15, pp. 1280-1292, (1979)
  • [5] Moosmuller H., Arnott W.P., Rodgers C.F., Chow J.C., Frazier C.A., Sherman L.E., Dietrich D.L., Photoacoustic and Filter Measurements Related to Aerosol Light Absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997), J. Geophys. Res. D, 103, pp. 28149-28157, (1998)
  • [6] Dillner A.M., Stein C., Larson S.M., Hitzenberger R., Measuring of Mass Extinction Efficiency of Elemental Carbon in Rural Aerosol, Aerosol Sci. Technol., 35, pp. 1009-1021, (2001)
  • [7] Horvath H., Atmospheric Light Absorption: A Review, Atmos. Environ. A, 27, pp. 293-317, (1993)
  • [8] Bodhaine B.A., Aerosol Absorption Measurements at Barrow, Mauna Loa and South Pole, J. Geophys. Res. D, 100, pp. 8967-8975, (1995)
  • [9] Arnott W.P., Moosmuller H., Sheridan P.J., Ogren J.A., Raspet R., Slaton W.V., Hand J.L., Kreidenweis S.M., Collett J.L., Photoacoustic and Filter-Based Ambient Aerosol Light Absorption Measurements: Instrument Comparisons and the Role of Relative Humidity, J. Geophys. Res. D, 108, (2003)
  • [10] Arnott W.P., Moosmuller H., Rogers C.F., Jin T., Bruch R., Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description, Atmos. Environ., 33, pp. 2845-2852, (1999)