Positivity Among P-partition Generating Functions

被引:0
作者
Nathan R. T. Lesnevich
Peter R. W. McNamara
机构
[1] Washington University in St. Louis,Department of Mathematics and Statistics
[2] Bucknell University,Department of Mathematics
来源
Annals of Combinatorics | 2022年 / 26卷
关键词
-partition; Labeled poset; Quasisymmetric function; -positive; Linear extension;
D O I
暂无
中图分类号
学科分类号
摘要
We seek simple conditions on a pair of labeled posets that determine when the difference of their (P,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P,\omega )$$\end{document}-partition enumerators is F-positive, i.e., positive in Gessel’s fundamental basis. This is a quasisymmetric analogue of the extensively studied problem of finding conditions on a pair of skew shapes that determine when the difference of their skew Schur functions is Schur-positive. We determine necessary conditions and separate sufficient conditions for F-positivity, and show that a broad operation for combining posets preserves positivity properties. We conclude with classes of posets for which we have conditions that are both necessary and sufficient.
引用
收藏
页码:171 / 204
页数:33
相关论文
共 77 条
[1]  
Bergeron F(2006)Inequalities between Littlewood-Richardson coefficients J. Combin. Theory Ser. A 113 567-590
[2]  
Biagioli R(2007)On products of J. Algebra 316 706-714
[3]  
Rosas MH(2005) characters and support containment Amer. J. Math. 127 101-127
[4]  
Dobrovolska G(2004)Eigenvalues, singular values, and Littlewood-Richardson coefficients Publ. Res. Inst. Math. Sci. 40 1147-1239
[5]  
Pylyavskyy P(2008)An invitation to the generalized saturation conjecture J. Algebraic Combin. 28 139-167
[6]  
Fomin S(1997)Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes J. Math. Phys. 38 1041-1068
[7]  
Fulton W(2007)Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties Amer. J. Math. 129 1611-1622
[8]  
Li C-K(2014)Schur positivity and Schur log-concavity J. Comb. 5 51-85
[9]  
Poon Y-T(2009)Comparing skew Schur functions: a quasisymmetric perspective European J. Combin. 30 1352-1369
[10]  
Kirillov AN(2012)Positivity results on ribbon Schur function differences European J. Combin. 33 1190-1206