Strict Neighbor-Distinguishing Total Index of Graphs

被引:0
作者
Jing Gu
Wei Fan Wang
Yi Qiao Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
来源
Acta Mathematica Sinica, English Series | 2022年 / 38卷
关键词
Strict neighbor-distinguishing total-coloring; Strict neighbor-distinguishing total index; Maximum degree; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A total-coloring of a graph G is strict neighbor-distinguishing if for any two adjacent vertices u and v, the set of colors used on u and its incident edges and the set of colors used on v and its incident edges are not included with each other. The strict neighbor-distinguishing total index χsnd′′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{{\rm{snd}}}^{\prime \prime }(G)$$\end{document} of G is the minimum number of colors in a strict neighbor-distinguishing total-coloring of G. In this paper, we prove that every simple graph G with ∆(G) ≥ 3 satisfies χsnd′′(G)≤2Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{{\rm{snd}}}^{\prime \prime }(G) \le 2\Delta (G)$$\end{document}.
引用
收藏
页码:770 / 776
页数:6
相关论文
共 50 条
[1]  
Appel K(1976)Every planar graph map is four colorable Bull. Amer. Math. Soc. 82 711-712
[2]  
Haken W(1941)On coloring the nodes of a network Proc. Cambridge Philos. Soc. 37 194-197
[3]  
Brooks R L(2008)On the adjacent vertex distinguishing total coloring numbers of graphs with ∆ = 3 Discrete Math. 308 4003-4007
[4]  
Chen X(2012)The adjacent vertex distinguishing total chromatic number Discrete Math. 312 2741-2750
[5]  
Coker T(2012)A note on the adjacent vertex distinguishing total chromatic number of graphs Discrete Math. 312 3544-3546
[6]  
Johannson K(2009)Concise proofs for adjacent vertex-distinguishing total colorings Discrete Math. 309 2548-2550
[7]  
Huang D(2019)Smarandachely adjacent vertex-distinguishing total coloring of 2-connected outerplanar graphs with ∆( College Math. 35 1-4
[8]  
Wang W(2012)) ≤ 3 (Chinese) Math. Pract. Theory 42 192-197
[9]  
Yan C(2014)On the Smarandachely adjacent vertex total coloring of some direct products (Chinese) J. Nankai Univ. Nat. Sci. 47 79-84
[10]  
Hulgan J(2017)The bound of the Smarandachely adjacent vertex total coloring of some kinds of 3-regular graph (Chinese) Discrete Math. 340 119-123