Korpelevich’s method for variational inequality problems in Banach spaces

被引:0
作者
Alfredo N. Iusem
Mostafa Nasri
机构
[1] Instituto de Matemática Pura e Aplicada,
来源
Journal of Global Optimization | 2011年 / 50卷
关键词
Bregman function; Bregman projection; Korpelevich’s method; Variational inequality problem;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a variant of Korpelevich’s method for solving variational inequality problems with operators in Banach spaces. A full convergence analysis of the method is presented under reasonable assumptions on the problem data.
引用
收藏
页码:59 / 76
页数:17
相关论文
共 53 条
[1]  
Armijo L.(1966)Minimization of functions having continuous partial derivatives Pac. J. Math. 16 1-3
[2]  
Alber Y.I.(1996)Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type Lect. Notes Pure Appl. Math. 178 15-50
[3]  
Alber Y.I.(2002)On average convergence of the iterative projection methods Taiwan. J. Math. 6 323-341
[4]  
Auslender A.(2005)Interior projection-like methods for monotone variational inequalities Math. Program. 104 39-68
[5]  
Teboulle M.(2005)A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities Nonconvex Optim. Appl. 77 113-129
[6]  
Bao T.Q.(2006)Some algorithms for solving mixed variational inequalities Acta Math. Vietnam. 31 83-103
[7]  
Khanh P.Q.(2005)A differential game of joint implementation of environmental projects Automatica 41 1737-1749
[8]  
Bao T.Q.(2007)On generalized Nash games and variational inequalities Oper. Res. Lett. 35 159-164
[9]  
Khanh P.Q.(1980)An iterative method for generalized complementarity problems IEEE Trans. Automat. Contr. 25 1225-1227
[10]  
Breton M.(1994)A new method for a class of variational inequalities Math. Program. 66 137-144