A Non-uniform Bound on Negative Binomial Approximation via Stein’s Method and z-functions

被引:0
作者
K. Jaioun
W. Panichkitkosolkul
K. Teerapabolarn
机构
[1] Thammasat University,Department of Mathematics and Statistics, Faculty of Science and Technology
[2] Burapha University,Department of Mathematics, Faculty of Science
[3] Centre of Excellence in Mathematics,undefined
[4] CHE,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Negative binomial approximation; Non-uniform bound; Stein’s method; -functions; Primary 60F05; Secondary 62E17;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, Stein’s method and z-functions are used to determine a non-uniform bound for approximating the cumulative distribution function of a nonnegative integer-valued random variable X by the negative binomial cumulative distribution function with parameters r∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\in {\mathbb {R}}^+$$\end{document} and p=1-q∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1-q\in (0,1)$$\end{document}. This bound is an appropriate criterion for evaluating the accuracy of this approximation. The result obtained in this study is used to approximate cumulative distribution functions including the negative hypergeometric cumulative distribution function, the Pólya cumulative distribution function, and the beta negative binomial cumulative distribution function.
引用
收藏
页码:519 / 536
页数:17
相关论文
共 19 条
[1]  
Brown TC(1999)Negative binomial approximation with Stein’s method Methodol. Comput. Appl. Probab. 1 407-421
[2]  
Phillips MJ(2015)A uniform bound on negative binomial approximation with Appl. Math. Sci. 9 2831-2841
[3]  
Jaioun K(2017)-functions Commun. Stat. Theory Methods 46 9284-9302
[4]  
Teerapabolarn K(2011)On perturbations of Stein operator Int. J. Pure Appl. Math. 69 453-467
[5]  
Kumar AN(1972)A pointwise negative binomial approximation by Proc. Sixth Berkeley Symp. Math. Stat. Probab. 2 583-602
[6]  
Upadhye NS(2010)-functions Int. Math. Forum 5 2541-2551
[7]  
Malingam P(2017)A bound for the error in the normal approximation to the distribution of a sum of dependent random variables AKCE Int. J. Graphs Comb. 14 287-294
[8]  
Teerapabolarn K(2009)Negative binomial approximation with Stein’s method and Stein’s identity Probab. Math. Stat. 29 205-226
[9]  
Stein C(2013)An improved bound for negative binomial approximation with Theory Probab. Appl. 57 97-109
[10]  
Teerapabolarn K(2008)-functions J. Appl. Probab. 45 456-471