Minimization of semicoercive functions: a generalization of Fichera’s existence theorem for the Signorini problem

被引:0
作者
Gianpietro Del Piero
机构
[1] Università di Ferrara,Dipartimento di Ingegneria
[2] International Research Center M&MoCS,undefined
来源
Continuum Mechanics and Thermodynamics | 2016年 / 28卷
关键词
Convex optimization; Noncoercive variational problems; Signorini problem; Fichera theorem; Motzkin decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
The existence theorem of Fichera for the minimum problem of semicoercive quadratic functions in a Hilbert space is extended to a more general class of convex and lower semicontinuous functions. For unbounded domains, the behavior at infinity is controlled by a lemma which states that every unbounded sequence with bounded energy has a subsequence whose directions converge to a direction of recession of the function. Thanks to this result, semicoerciveness plus the assumption that the effective domain is boundedly generated, that is, admits a Motzkin decomposition, become sufficient conditions for existence. In particular, for functions with a smooth quadratic part, a generalization of the existence condition given by Fichera’s theorem is proved.
引用
收藏
页码:5 / 17
页数:12
相关论文
共 25 条
  • [1] Adly S.(2001)A characterization of convex and semicoercive functionals J. Convex Anal. 8 127-148
  • [2] Ernst E.(1986)Some existence results on noncoercive variational inequalities Annali Scuola Normale Superiore Pisa, Serie IV XIII 617-659
  • [3] Théra M.(1988)General existence theorems for unilateral problems in continuum mechanics Arch. Ration. Mech. Anal. 100 149-189
  • [4] Baiocchi C.(2009)Stability of closedness of convex cones under linear mappings J. Convex Anal. 16 699-705
  • [5] Gastaldi F.(1965)Non linear monotone operators and convex sets in Banach spaces Bull. Am. Math. Soc. 71 780-785
  • [6] Tomarelli F.(1964)Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno Atti Accademia Naz. Lincei, Sez. I 7 71-140
  • [7] Baiocchi C.(2013)Motzkin decomposition of closed convex sets via truncation J. Math. Anal. Appl. 400 35-47
  • [8] Buttazzo G.(1965)Inéquation variationnelles non coercives C. R. Acad. Sc. Paris 261 25-27
  • [9] Gastaldi F.(1967)Variational inequalities Comm. Pure Appl. Math. 20 493-519
  • [10] Tomarelli F.(2007)On the closedness of the linear image of a closed convex cone Math. Oper. Res. 32 395-412