Comprehensive analysis of immunogenic cell death-related gene and construction of prediction model based on WGCNA and multiple machine learning in severe COVID-19

被引:0
作者
Li, Chunyu [1 ,2 ]
Wu, Ke [1 ,2 ]
Yang, Rui [3 ]
Liao, Minghua [1 ,2 ]
Li, Jun [1 ]
Zhu, Qian [1 ,2 ]
Zhang, Jiayi [1 ,2 ]
Zhang, Xianming [1 ]
机构
[1] Guizhou Med Univ, Dept Resp & Crit Care Med, Affiliated Hosp, Guiyang 550004, Guizhou, Peoples R China
[2] Guizhou Med Univ, Sch Clin Med, Guiyang 550004, Guizhou, Peoples R China
[3] Guiyang First Peoples Hosp, Dept Internal Med, Guiyang 550004, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
COVID-19; Immunogenic cell death; Machine learning; Immune cell infiltration; MECHANISMS;
D O I
10.1038/s41598-024-59117-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The death of coronavirus disease 2019 (COVID-19) is primarily due to from critically ill patients, especially from ARDS complications caused by SARS-CoV-2. Therefore, it is essential to contribute an in-depth understanding of the pathogenesis of the disease and to identify biomarkers for predicting critically ill patients at the molecular level. Immunogenic cell death (ICD), as a specific variant of regulatory cell death driven by stress, can induce adaptive immune responses against cell death antigens in the host. Studies have confirmed that both innate and adaptive immune pathways are involved in the pathogenesis of SARS-CoV-2 infection. However, the role of ICD in the pathogenesis of severe COVID-19 has rarely been explored. In this study, we systematically evaluated the role of ICD-related genes in COVID-19. We conducted consensus clustering, immune infiltration analysis, and functional enrichment analysis based on ICD differentially expressed genes. The results showed that immune infiltration characteristics were altered in severe and non-severe COVID-19. In addition, we used multiple machine learning methods to screen for five risk genes (KLF5, NSUN7, APH1B, GRB10 and CD4), which are used to predict COVID-19 severity. Finally, we constructed a nomogram to predict the risk of severe COVID-19 based on the classification and recognition model, and validated the model with external data sets. This study provides a valuable direction for the exploration of the pathogenesis and progress of COVID-19, and helps in the early identification of severe cases of COVID-19 to reduce mortality.
引用
收藏
页数:15
相关论文
共 54 条
[1]   Serum S100B protein as a marker of severity in Covid-19 patients [J].
Aceti, Antonio ;
Margarucci, Lory Marika ;
Scaramucci, Elena ;
Orsini, Massimiliano ;
Salerno, Gerardo ;
Di Sante, Gabriele ;
Gianfranceschi, Gianluca ;
Di Liddo, Rosa ;
Valeriani, Federica ;
Ria, Francesco ;
Simmaco, Maurizio ;
Parnigotto, Pier Paolo ;
Vitali, Matteo ;
Romano Spica, Vincenzo ;
Michetti, Fabrizio .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   Targeting potential drivers of COVID-19: Neutrophil extracellular traps [J].
Barnes, Betsy J. ;
Adrover, Jose M. ;
Baxter-Stoltzfus, Amelia ;
Borczuk, Alain ;
Cools-Lartigue, Jonathan ;
Crawford, James M. ;
Dassler-Plenker, Juliane ;
Guerci, Philippe ;
Huynh, Caroline ;
Knight, Jason S. ;
Loda, Massimo ;
Looney, Mark R. ;
McAllister, Florencia ;
Rayes, Roni ;
Renaud, Stephane ;
Rousseau, Simon ;
Salvatore, Steven ;
Schwartz, Robert E. ;
Spicer, Jonathan D. ;
Yost, Christian C. ;
Weber, Andrew ;
Zuo, Yu ;
Egeblad, Mikala .
JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (06)
[3]   COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps [J].
Borges, Leandro ;
Pithon-Curi, Tania Cristina ;
Curi, Rui ;
Hatanaka, Elaine .
MEDIATORS OF INFLAMMATION, 2020, 2020
[4]   SARS-CoV-2 uses CD4 to infect T helper lymphocytes [J].
Brunetti, Natalia S. ;
Davanzo, Gustavo G. ;
de Moraes, Diogo ;
Ferrari, Allan J. R. ;
Souza, Gabriela F. ;
Muraro, Stefanie Primon ;
Knittel, Thiago L. ;
Boldrini, Vinicius O. ;
Monteiro, Lauar B. ;
Virgilio-da-Silva, Joo Victor ;
Profeta, Gerson S. ;
Wassano, Natalia S. ;
Santos, Luana Nunes ;
Carregari, Victor C. ;
Dias, Artur H. S. ;
Veras, Flavio P. ;
Tavares, Lucas A. ;
Forato, Julia ;
Castro, Icaro M. S. ;
Silva-Costa, Licia C. ;
Palma, Andre C. ;
Mansour, Eli ;
Ulaf, Raisa G. ;
Bernardes, Ana F. ;
Nunes, Thyago A. ;
Ribeiro, Luciana C. ;
Agrela, Marcus V. ;
Moretti, Maria Luiza ;
Buscaratti, Lucas I. ;
Crunfli, Fernanda ;
Ludwig, Raissa G. ;
Gerhardt, Jaqueline A. ;
Munhoz-Alves, Natalia ;
Marques, Ana Maria ;
Sesti-Costa, Renata ;
Amorim, Mariene R. ;
Toledo-Teixeira, Daniel A. ;
Parise, Pierina Lorencini ;
Martini, Matheus Cavalheiro ;
Bispos-dos-Santos, Karina ;
Simeoni, Camila L. ;
Granja, Fabiana ;
Silvestrini, Virginia C. ;
de Oliveira, Eduardo B. ;
Faca, Vitor M. ;
Carvalho, Murilo ;
Castelucci, Bianca G. ;
Pereira, Alexandre B. ;
Coimbra, Lais D. ;
Dias, Marieli M. G. .
ELIFE, 2023, 12
[5]   Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort [J].
Carapito, Raphael ;
Li, Richard ;
Helms, Julie ;
Carapito, Christine ;
Gujja, Sharvari ;
Rolli, Veronique ;
Guimaraes, Raony ;
Malagon-Lopez, Jose ;
Spinnhirny, Perrine ;
Lederle, Alexandre ;
Mohseninia, Razieh ;
Hirschler, Aurelie ;
Muller, Leslie ;
Bastard, Paul ;
Gervais, Adrian ;
Zhang, Qian ;
Danion, Francois ;
Ruch, Yvon ;
Schenck, Maleka ;
Collange, Olivier ;
Chamaraux-Tran, Thien-Nga ;
Molitor, Anne ;
Pichot, Angelique ;
Bernard, Alice ;
Tahar, Ouria ;
Bibi-Triki, Sabrina ;
Wu, Haiguo ;
Paul, Nicodeme ;
Mayeur, Sylvain ;
Larnicol, Annabel ;
Laumond, Geraldine ;
Frappier, Julia ;
Schmidt, Sylvie ;
Hanauer, Antoine ;
Macquin, Cecile ;
Stemmelen, Tristan ;
Simons, Michael ;
Mariette, Xavier ;
Hermine, Olivier ;
Fafi-Kremer, Samira ;
Goichot, Bernard ;
Drenou, Bernard ;
Kuteifan, Khaldoun ;
Pottecher, Julien ;
Mertes, Paul-Michel ;
Kailasan, Shweta ;
Aman, M. Javad ;
Pin, Elisa ;
Nilsson, Peter ;
Thomas, Anne .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (628)
[6]   Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study [J].
Carsana, Luca ;
Sonzogni, Aurelio ;
Nasr, Ahmed ;
Rossi, Roberta Simona ;
Pellegrinelli, Alessandro ;
Zerbi, Pietro ;
Rech, Roberto ;
Colombo, Riccardo ;
Antinori, Spinello ;
Corbellino, Mario ;
Galli, Massimo ;
Catena, Emanuele ;
Tosoni, Antonella ;
Gianatti, Andrea ;
Nebuloni, Manuela .
LANCET INFECTIOUS DISEASES, 2020, 20 (10) :1135-1140
[7]   Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2 [J].
Catanzaro, Michele ;
Fagiani, Francesca ;
Racchi, Marco ;
Corsini, Emanuela ;
Govoni, Stefano ;
Lanni, Cristina .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)
[8]   HMGB1 as a potential biomarker and therapeutic target for severe COVID-19 [J].
Chen, Ruochan ;
Huang, Yan ;
Quan, Jun ;
Liu, Jiao ;
Wang, Haichao ;
Billiar, Timothy R. ;
Lotze, Michael T. ;
Zeh, Herbert J. ;
Kang, Rui ;
Tang, Daolin .
HELIYON, 2020, 6 (12)
[9]   A Multimodality Machine Learning Approach to Differentiate Severe and Nonsevere COVID-19: Model Development and Validation [J].
Chen, Yuanfang ;
Ouyang, Liu ;
Bao, Forrest S. ;
Li, Qian ;
Han, Lei ;
Zhang, Hengdong ;
Zhu, Baoli ;
Ge, Yaorong ;
Robinson, Patrick ;
Xu, Ming ;
Liu, Jie ;
Chen, Shi .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (04)
[10]   COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis [J].
Chua, Robert Lorenz ;
Lukassen, Soeren ;
Trump, Saskia ;
Hennig, Bianca P. ;
Wendisch, Daniel ;
Pott, Fabian ;
Debnath, Olivia ;
Thuermann, Loreen ;
Kurth, Florian ;
Voelker, Maria Theresa ;
Kazmierski, Julia ;
Timmermann, Bernd ;
Twardziok, Sven ;
Schneider, Stefan ;
Machleidt, Felix ;
Mueller-Redetzky, Holger ;
Maier, Melanie ;
Krannich, Alexander ;
Schmidt, Sein ;
Balzer, Felix ;
Liebig, Johannes ;
Loske, Jennifer ;
Suttorp, Norbert ;
Eils, Juergen ;
Ishaque, Naveed ;
Liebert, Uwe Gerd ;
von Kalle, Christof ;
Hocke, Andreas ;
Witzenrath, Martin ;
Goffinet, Christine ;
Drosten, Christian ;
Laudi, Sven ;
Lehmann, Irina ;
Conrad, Christian ;
Sander, Leif-Erik ;
Eils, Roland .
NATURE BIOTECHNOLOGY, 2020, 38 (08) :970-+