Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete

被引:0
|
作者
Tayfun Uygunoğlu
机构
[1] Afyon Kocatepe University,Technical Education Faculty, Construction Department
来源
Materials and Structures | 2008年 / 41卷
关键词
Fiber reinforcement; Concrete; Microstructure; Bending strength; Crack detection;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents microstructure and flexural behavior of steel-fiber reinforced concrete produced with different steel fibers volume fraction and aspect ratio. Prismatic concrete specimens of 100 × 100 × 350 mm were prepared with and without steel fiber. Two different steel fiber types (both is hooked-end) were used by ratio of 0% (control), 0.2, 0.4, 0.6 and 0.8% by volume. Specimens were de-molded after 24 h and cured in water until 7, 28, 56, 180 and 360 days. On the prisms, flexural strength has been defined for every age. The crack widths have also been measured after maximum bearing loads. Microstructure of SFRC was studied by scanning electron microscopy and optical microscopy for 180 aged specimens. The results showed that the polarized microcopy images may be used for observing the bond characteristic of SFRC as alternatively to SEM. A good bond was observed between steel fiber and concrete matrix interface zone by using polarizing microscopy, too. Flexural strength of SFRC increased with the concrete age and fiber volume fraction. Besides, the first crack development significantly decreased by increasing of fiber volume fraction in the all concrete ages.
引用
收藏
页码:1441 / 1449
页数:8
相关论文
共 50 条
  • [1] Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete
    Uygunoglu, Tayfun
    MATERIALS AND STRUCTURES, 2008, 41 (08) : 1441 - 1449
  • [2] Flexural behavior of reinforced concrete beams externally strengthened with Hardwire Steel-Fiber sheets
    Hawileh, R. A.
    Nawaz, W.
    Abdalla, J. A.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 172 : 562 - 573
  • [3] Experimental Investigation of the Flexural Behavior of Steel Fiber Reinforced Concrete
    Karzad, A. S.
    Al-Sadoon, Z.
    Leblouba, M.
    Maalej, M.
    2ND INTERNATIONAL CONFERENCE ON MATERIALS TECHNOLOGY AND ENERGY, 2020, 943
  • [4] Experimental study on flexural behavior of concrete beams reinforced by steel-fiber reinforced polymer composite bars
    Sun, Z. Y.
    Yang, Y.
    Qin, W. H.
    Ren, S. T.
    Wu, G.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2012, 31 (24) : 1737 - 1745
  • [5] Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars
    Xiao, Shu-Hua
    Lin, Jia-Xiang
    Li, Li-Juan
    Guo, Yong-Chang
    Zeng, Jun-Jie
    Xie, Zhi-Hong
    Wei, Fei-Fei
    Li, Ming
    JOURNAL OF BUILDING ENGINEERING, 2021, 43
  • [6] Flexural behavior of steel fiber reinforced concrete
    School of Civ. and Struct. Engrg., Nanyang Technol, Univ., Singapore 639798, Singapore
    不详
    不详
    J Mater Civ Eng, 2 (86-97):
  • [7] Flexural behavior of steel fiber reinforced concrete
    Lok, TS
    Pei, JS
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1998, 10 (02) : 86 - 97
  • [8] Flexural behavior of steel fiber reinforced concrete - Discussion
    Maalej, M
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1999, 11 (02) : 179 - 180
  • [9] Flexural And Compressional Behavior Of Steel Fiber Reinforced Concrete
    Sivapriya, S., V
    Ridhuvaran, S.
    Karthick, V
    Gopikrishna, R.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2018, 9 (06): : 405 - 412
  • [10] Flexural behavior of steel fiber reinforced concrete - Closure
    Lok, TS
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1999, 11 (02) : 180 - 180