The fourth moment of derivatives of Dirichlet L-functions in function fields

被引:0
|
作者
Julio Cesar Andrade
Michael Yiasemides
机构
[1] University of Exeter,Department of Mathematics
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Moments of ; -functions; Dirichlet character; Polynomial; Function field; Derivative; Primary 11M06; Secondary 11M38; 11M50; 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the asymptotic main term of moments of arbitrary derivatives of L-functions in the function field setting. Specifically, we obtain the first, second, and mixed fourth moments. The average is taken over all non-trivial characters of a prime modulus Q∈Fq[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in {\mathbb {F}}_q [T]$$\end{document}, and the asymptotic limit is as degQ⟶∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{deg}\,}}Q \longrightarrow \infty $$\end{document}. This extends the work of Tamam who obtained the asymptotic main term of low moments of L-functions, without derivatives, in the function field setting. It is also the function field q-analogue of the work of Conrey, who obtained the fourth moment of derivatives of the Riemann zeta-function.
引用
收藏
页码:671 / 697
页数:26
相关论文
共 50 条
  • [41] Mixed moments of L-functions
    Meera Thillainatesan
    The Ramanujan Journal, 2006, 11 : 111 - 133
  • [42] The L-functions of Witt coverings
    Chunlei Liu
    Dasheng Wei
    Mathematische Zeitschrift, 2007, 255 : 95 - 115
  • [43] Prime number theorems for Rankin-Selberg L-functions over number fields
    Tim Gillespie
    GuangHua Ji
    Science China Mathematics, 2011, 54 : 35 - 46
  • [44] Poles of L-functions on quaternion groups
    Çetin Ürtiş
    Chinese Annals of Mathematics, Series B, 2014, 35 : 519 - 526
  • [45] A note on the zeros of zeta and L-functions
    Emanuel Carneiro
    Vorrapan Chandee
    Micah B. Milinovich
    Mathematische Zeitschrift, 2015, 281 : 315 - 332
  • [46] Notes on the arithmetic of Hecke L-functions
    A Raghuram
    Proceedings - Mathematical Sciences, 132
  • [47] Distinguishing L-functions by joint universality
    Jörn Steuding
    Lithuanian Mathematical Journal, 2021, 61 : 413 - 423
  • [48] Nonvanishing of derivatives of Hecke L-functions associated to cusp forms inside the critical strip
    Kohnen, Winfried
    Sengupta, Jyoti
    Weigel, Miriam
    RAMANUJAN JOURNAL, 2020, 51 (02) : 319 - 327
  • [49] Non-vanishing of derivatives of L-functions of Hilbert modular forms in the critical strip
    Alia Hamieh
    Wissam Raji
    Research in Number Theory, 2021, 7
  • [50] On the Selberg orthogonality for automorphic L-functions
    Muharem Avdispahić
    Lejla Smajlović
    Archiv der Mathematik, 2010, 94 : 147 - 154