The fourth moment of derivatives of Dirichlet L-functions in function fields

被引:0
|
作者
Julio Cesar Andrade
Michael Yiasemides
机构
[1] University of Exeter,Department of Mathematics
来源
Mathematische Zeitschrift | 2021年 / 299卷
关键词
Moments of ; -functions; Dirichlet character; Polynomial; Function field; Derivative; Primary 11M06; Secondary 11M38; 11M50; 11N36;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain the asymptotic main term of moments of arbitrary derivatives of L-functions in the function field setting. Specifically, we obtain the first, second, and mixed fourth moments. The average is taken over all non-trivial characters of a prime modulus Q∈Fq[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in {\mathbb {F}}_q [T]$$\end{document}, and the asymptotic limit is as degQ⟶∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{deg}\,}}Q \longrightarrow \infty $$\end{document}. This extends the work of Tamam who obtained the asymptotic main term of low moments of L-functions, without derivatives, in the function field setting. It is also the function field q-analogue of the work of Conrey, who obtained the fourth moment of derivatives of the Riemann zeta-function.
引用
收藏
页码:671 / 697
页数:26
相关论文
共 50 条