We obtain the asymptotic main term of moments of arbitrary derivatives of L-functions in the function field setting. Specifically, we obtain the first, second, and mixed fourth moments. The average is taken over all non-trivial characters of a prime modulus Q∈Fq[T]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q \in {\mathbb {F}}_q [T]$$\end{document}, and the asymptotic limit is as degQ⟶∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\,\mathrm{deg}\,}}Q \longrightarrow \infty $$\end{document}. This extends the work of Tamam who obtained the asymptotic main term of low moments of L-functions, without derivatives, in the function field setting. It is also the function field q-analogue of the work of Conrey, who obtained the fourth moment of derivatives of the Riemann zeta-function.