Numerical conformal mappings onto the linear slit domain

被引:0
作者
Kaname Amano
Dai Okano
Hidenori Ogata
Masaaki Sugihara
机构
[1] Ehime University,Department of Electrical and Electronic Engineering and Computer Science, Graduate School of Science and Engineering
[2] The University of Electro-Communications,Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering
[3] The University of Tokyo,Department of Mathematical Informatics, Graduate School of Information Science and Technology
来源
Japan Journal of Industrial and Applied Mathematics | 2012年 / 29卷
关键词
Conformal mapping; Multiply connected domain; Potential flow; Charge simulation; Fundamental solution; 30C30; 65E05;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a numerical method for the conformal mapping of unbounded multiply connected domains exterior to closed Jordan curves C1, . . . ,Cn onto a canonical linear slit domain, which is the entire plane with linear slits S1, . . . , Sn of angles θ1, . . . , θn arbitrarily assigned to the real axis, respectively. If θ1 = · · · = θn = θ then it is the well-known parallel slit domain, which is important in the problem of potential flows past obstacles. In the method, we reduce the mapping problem to a boundary value problem for an analytic function, and approximate it by a linear combination of complex logarithmic functions based on the charge simulation method. Numerical examples show the effectiveness of our method.
引用
收藏
页码:165 / 186
页数:21
相关论文
共 86 条
  • [21] Crowdy D.G.(1988)A mathematical study of the charge simulation method I J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 507-518
  • [22] Marshall J.(1996)The collocation points of the fundamental solution method for the potential problem Comput. Math. Appl. 31 123-137
  • [23] DeLillo T.K.(1988)On the numerical stability of the method of fundamental solution applied to the Dirichlet problem Japan J. Appl. Math. 5 123-133
  • [24] Horn M.A.(1916)Abhandlungen zur Theorie der konformen Abbildung IV, Abbildung mehrfach zusammenhängender schlichter Bereiche auf Schlitzbereiche Acta Math. 41 305-344
  • [25] Pfaltzgraff J.A.(2009)Leading-edge vortices elevate lift of autorotating plant seeds Science 324 1438-1440
  • [26] DeLillo T.K.(1980)An approximate method to solve two-dimensional Laplace’s equation by means of superposition of Green’s functions on a Riemann surface J. Inform. Process. 3 127-139
  • [27] Elcrat A.R.(1995)Comparison of conventional and “invariant” schemes of fundamental solutions method for annular domains Japan J. Indust. Appl. Math. 12 61-85
  • [28] Pfaltzgraff J.A.(2002)Numerical conformal mapping of periodic structure domains Japan J. Indust. Appl. Math. 19 257-275
  • [29] DeLillo T.K.(2003)Unique solvability of the linear system appearing in the invariant scheme of the charge simulation method Japan J. Indust. Appl. Math. 20 17-35
  • [30] Driscoll T.A.(2003)A fundamental solution method for viscous flow problems with obstacles in a periodic array J. Comput. Appl. Math. 152 411-425