A primal-dual algorithm for the minimum partial set multi-cover problem

被引:0
|
作者
Yingli Ran
Yishuo Shi
Changbing Tang
Zhao Zhang
机构
[1] Zhejiang Normal University,College of Mathematics and Computer Science
[2] Institute of Information Science,undefined
[3] Academia Sinica,undefined
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Partial set multi-cover problem; Positive influence dominating set; Densest ; -subgraph problem; Primal-dual; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In a minimum partial set multi-cover problem (MinPSMC), given an element set E, a collection of subsets S⊆2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}} \subseteq 2^E$$\end{document}, a cost wS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_S$$\end{document} on each set S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in {\mathcal {S}}$$\end{document}, a covering requirement re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} for each element e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, and an integer k, the goal is to find a sub-collection F⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}} \subseteq {\mathcal {S}}$$\end{document} to fully cover at least k elements such that the cost of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is as small as possible, where element e is fully covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} if it belongs to at least re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} sets of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}. On the application side, the problem has its background in the seed selection problem in a social network. On the theoretical side, it is a natural combination of the minimum partial (single) set cover problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although both MinPSC and MinSMC admit good approximations whose performance ratios match those lower bounds for the classic set cover problem, previous studies show that theoretical study on MinPSMC is quite challenging. In this paper, we prove that MinPSMC cannot be approximated within factor O(n12(loglogn)c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^\frac{1}{2(\log \log n)^c})$$\end{document} for some constant c under the ETH assumption. Furthermore, assuming rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} is a constant, where rmax=maxe∈Ere\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max } =\max _{e\in E} r_e$$\end{document} is the maximum covering requirement and f is the maximum number of sets containing a common element, we present a primal-dual algorithm for MinPSMC and show that its performance ratio is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. We also improve the ratio for a restricted version of MinPSMC which possesses a graph-type structure.
引用
收藏
页码:725 / 746
页数:21
相关论文
共 50 条
  • [41] New convergence analysis of a primal-dual algorithm with large stepsizes
    Zhi Li
    Ming Yan
    Advances in Computational Mathematics, 2021, 47
  • [42] A note on the minimum power partial cover problem on the plane
    Dai, Han
    Deng, Bin
    Li, Weidong
    Liu, Xiaofei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 970 - 978
  • [43] A note on the minimum power partial cover problem on the plane
    Han Dai
    Bin Deng
    Weidong Li
    Xiaofei Liu
    Journal of Combinatorial Optimization, 2022, 44 : 970 - 978
  • [44] Approximation algorithm for the minimum partial connected Roman dominating set problem
    Zhang, Yaoyao
    Zhang, Zhao
    Du, Ding-Zhu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (04)
  • [45] Approximation algorithms for submodular vertex cover problems with linear/submodular penalties using primal-dual technique
    Xu, Dachuan
    Wang, Fengmin
    Du, Donglei
    Wu, Chenchen
    THEORETICAL COMPUTER SCIENCE, 2016, 630 : 117 - 125
  • [46] Primal-Dual Active-Set Methods for Large-Scale Optimization
    Robinson, Daniel P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) : 137 - 171
  • [47] A primal-dual approximation algorithm for the Asymmetric Prize-Collecting TSP
    Viet Hung Nguyen
    Journal of Combinatorial Optimization, 2013, 25 : 265 - 278
  • [48] A primal-dual approximation algorithm for the Asymmetric Prize-Collecting TSP
    Viet Hung Nguyen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (02) : 265 - 278
  • [49] Primal-Dual Active-Set Methods for Large-Scale Optimization
    Daniel P. Robinson
    Journal of Optimization Theory and Applications, 2015, 166 : 137 - 171
  • [50] An adaptive fractional-order primal-dual image denoising algorithm
    Tian, Dan
    Li, Dapeng
    Journal of Computational Information Systems, 2015, 11 (16): : 5751 - 5758