A primal-dual algorithm for the minimum partial set multi-cover problem

被引:0
|
作者
Yingli Ran
Yishuo Shi
Changbing Tang
Zhao Zhang
机构
[1] Zhejiang Normal University,College of Mathematics and Computer Science
[2] Institute of Information Science,undefined
[3] Academia Sinica,undefined
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Partial set multi-cover problem; Positive influence dominating set; Densest ; -subgraph problem; Primal-dual; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In a minimum partial set multi-cover problem (MinPSMC), given an element set E, a collection of subsets S⊆2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}} \subseteq 2^E$$\end{document}, a cost wS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_S$$\end{document} on each set S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in {\mathcal {S}}$$\end{document}, a covering requirement re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} for each element e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, and an integer k, the goal is to find a sub-collection F⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}} \subseteq {\mathcal {S}}$$\end{document} to fully cover at least k elements such that the cost of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is as small as possible, where element e is fully covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} if it belongs to at least re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} sets of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}. On the application side, the problem has its background in the seed selection problem in a social network. On the theoretical side, it is a natural combination of the minimum partial (single) set cover problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although both MinPSC and MinSMC admit good approximations whose performance ratios match those lower bounds for the classic set cover problem, previous studies show that theoretical study on MinPSMC is quite challenging. In this paper, we prove that MinPSMC cannot be approximated within factor O(n12(loglogn)c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^\frac{1}{2(\log \log n)^c})$$\end{document} for some constant c under the ETH assumption. Furthermore, assuming rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} is a constant, where rmax=maxe∈Ere\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max } =\max _{e\in E} r_e$$\end{document} is the maximum covering requirement and f is the maximum number of sets containing a common element, we present a primal-dual algorithm for MinPSMC and show that its performance ratio is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. We also improve the ratio for a restricted version of MinPSMC which possesses a graph-type structure.
引用
收藏
页码:725 / 746
页数:21
相关论文
共 50 条
  • [31] Extending the Primal-Dual 2-Approximation Algorithm Beyond Uncrossable Set Families
    Nutov, Zeev
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2024, 2024, 14679 : 351 - 364
  • [32] Approximation algorithms for minimum weight partial connected set cover problem
    Dongyue Liang
    Zhao Zhang
    Xianliang Liu
    Wei Wang
    Yaolin Jiang
    Journal of Combinatorial Optimization, 2016, 31 : 696 - 712
  • [33] A Fractional-Order Primal-Dual Denoising Algorithm
    Tian, Dan
    Li, Dapeng
    Zhang, Yingxin
    PROCEEDINGS OF THE 2015 ASIA-PACIFIC ENERGY EQUIPMENT ENGINEERING RESEARCH CONFERENCE (AP3ER 2015), 2015, 9 : 457 - 460
  • [34] Approximation algorithms for minimum weight partial connected set cover problem
    Liang, Dongyue
    Zhang, Zhao
    Liu, Xianliang
    Wang, Wei
    Jiang, Yaolin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 696 - 712
  • [35] A simple approximation algorithm for minimum weight partial connected set cover
    Zhang, Yubai
    Ran, Yingli
    Zhang, Zhao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 956 - 963
  • [36] A simple approximation algorithm for minimum weight partial connected set cover
    Yubai Zhang
    Yingli Ran
    Zhao Zhang
    Journal of Combinatorial Optimization, 2017, 34 : 956 - 963
  • [37] Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties
    Xu, Dachuan
    Wang, Fengmin
    Du, Donglei
    Wu, Chenchen
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 336 - 345
  • [38] A primal-dual 3-approximation algorithm for the stochastic facility location problem with submodular penalties
    Xu, Dachuan
    Gao, Dongxiao
    Wu, Chenchen
    OPTIMIZATION, 2015, 64 (03) : 617 - 626
  • [39] A Revisit to the Primal-Dual Based Clock Skew Scheduling Algorithm
    Ni, Min
    Memik, Seda Ogrenci
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2010), 2010, : 755 - 764
  • [40] New convergence analysis of a primal-dual algorithm with large stepsizes
    Li, Zhi
    Yan, Ming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)