A primal-dual algorithm for the minimum partial set multi-cover problem

被引:0
|
作者
Yingli Ran
Yishuo Shi
Changbing Tang
Zhao Zhang
机构
[1] Zhejiang Normal University,College of Mathematics and Computer Science
[2] Institute of Information Science,undefined
[3] Academia Sinica,undefined
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Partial set multi-cover problem; Positive influence dominating set; Densest ; -subgraph problem; Primal-dual; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In a minimum partial set multi-cover problem (MinPSMC), given an element set E, a collection of subsets S⊆2E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}} \subseteq 2^E$$\end{document}, a cost wS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_S$$\end{document} on each set S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\in {\mathcal {S}}$$\end{document}, a covering requirement re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} for each element e∈E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E$$\end{document}, and an integer k, the goal is to find a sub-collection F⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}} \subseteq {\mathcal {S}}$$\end{document} to fully cover at least k elements such that the cost of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} is as small as possible, where element e is fully covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} if it belongs to at least re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_e$$\end{document} sets of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}. On the application side, the problem has its background in the seed selection problem in a social network. On the theoretical side, it is a natural combination of the minimum partial (single) set cover problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although both MinPSC and MinSMC admit good approximations whose performance ratios match those lower bounds for the classic set cover problem, previous studies show that theoretical study on MinPSMC is quite challenging. In this paper, we prove that MinPSMC cannot be approximated within factor O(n12(loglogn)c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^\frac{1}{2(\log \log n)^c})$$\end{document} for some constant c under the ETH assumption. Furthermore, assuming rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max }$$\end{document} is a constant, where rmax=maxe∈Ere\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{\max } =\max _{e\in E} r_e$$\end{document} is the maximum covering requirement and f is the maximum number of sets containing a common element, we present a primal-dual algorithm for MinPSMC and show that its performance ratio is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. We also improve the ratio for a restricted version of MinPSMC which possesses a graph-type structure.
引用
收藏
页码:725 / 746
页数:21
相关论文
共 50 条
  • [21] Algorithm for the network flow monitoring set based on primal-dual method
    Liu, Xiang-Hui
    Yin, Jian-Ping
    Lu, Xi-Cheng
    Cai, Zhi-Ping
    Zhao, Jian-Min
    Ruan Jian Xue Bao/Journal of Software, 2006, 17 (04): : 838 - 844
  • [22] A primal-dual approximation algorithm for stochastic facility location problem with service installation costs
    Xing Wang
    Dachuan Xu
    Xinyuan Zhao
    Frontiers of Mathematics in China, 2011, 6 : 957 - 964
  • [23] A Primal-Dual Approximation Algorithm for the k-Level Stochastic Facility Location Problem
    Wang, Zhen
    Du, Donglei
    Xu, Dachuan
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 253 - +
  • [24] A primal-dual approximation algorithm for the survivable network design problem in hypergraphs
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    DISCRETE APPLIED MATHEMATICS, 2003, 126 (2-3) : 275 - 289
  • [25] A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties
    Donglei Du
    Ruixing Lu
    Dachuan Xu
    Algorithmica, 2012, 63 : 191 - 200
  • [26] A primal-dual approximation algorithm for stochastic facility location problem with service installation costs
    Wang, Xing
    Xu, Dachuan
    Zhao, Xinyuan
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (05) : 957 - 964
  • [27] A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties
    Du, Donglei
    Lu, Ruixing
    Xu, Dachuan
    ALGORITHMICA, 2012, 63 (1-2) : 191 - 200
  • [28] An approximation algorithm for the minimum latency set cover problem
    Hassin, R
    Levin, A
    ALGORITHMS - ESA 2005, 2005, 3669 : 726 - 733
  • [29] A Primal-Dual Randomized Algorithm for Weighted Paging
    Bansal, Nikhil
    Buchbinder, Niv
    Naor, Joseph
    JOURNAL OF THE ACM, 2012, 59 (04)
  • [30] An improved primal-dual approximation algorithm for the k-means problem with penalties
    Ren, Chunying
    Xu, Dachuan
    Du, Donglei
    Li, Min
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2022, 32 (02) : 151 - 163