Fredholm index and spectral flow in non-self-adjoint case

被引:0
作者
Guoyuan Chen
机构
[1] Zhejiang University of Finance and Economics,School of Mathematics and Statistics
来源
Acta Mathematica Sinica, English Series | 2013年 / 29卷
关键词
Fredholm index; spectral flow; non-self-adjoint operators; elliptic operators; 58J30; 58J20;
D O I
暂无
中图分类号
学科分类号
摘要
A version of the “Fredholm index = spectral flow” theorem is proved for general families of elliptic operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {A(t)} \right\}_{t \in \mathbb{R}} $$\end{document} on closed (compact and without boundary) manifolds. Here we do not require that A(t), t ∈ ℝ or its leading part is self-adjoint.
引用
收藏
页码:975 / 992
页数:17
相关论文
共 17 条
[1]  
Atiyah M. F.(1975)Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 77 43-69
[2]  
Patodi V. K.(1976)Spectral asymmetry and Riemannian geometry. III Math. Proc. Cambridge Philos. Soc. 79 71-99
[3]  
Singer I. M.(1995)The spectral flow and the Maslov index Bull. London Math. Soc. 27 1-33
[4]  
Atiyah M. F.(1988)An instanton-invariant for 3-manifolds Comm. Math. Phys. 118 215-240
[5]  
Patodi V. K.(1989)Symplectic fixed points and holomorphic spheres Comm. Math. Phys. 120 575-611
[6]  
Singer I. M.(2007)The Seiberg-Witten equations and the Weinstein conjecture Geom. Topol. 11 2117-2202
[7]  
Robbin J.(1996)Self-adjoint Fredholm operators and spectral flow Canad. Math. Bull. 39 460-467
[8]  
Salamon D.(1999)Maslov-type index theory for symplectic paths and spectral flow. I Chinese Ann. Math. Ser. B 20 413-424
[9]  
Floer A.(2005)Unbounded Fredholm operators and spectral flow Canad. J. Math. 57 225-250
[10]  
Floer A.(undefined)undefined undefined undefined undefined-undefined