Slice regular functions in several variables

被引:0
作者
Riccardo Ghiloni
Alessandro Perotti
机构
[1] University of Trento,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
Slice regular functions; Functions of hypercomplex variables; Cauchy integral formula; Quaternions; Clifford algebras; Octonions; Real alternative algebras; 30G35; 32A30; 17D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we lay the foundations of the theory of slice regular functions in several (non-commuting) variables ranging in any real alternative ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}-algebra, including quaternions, octonions and Clifford algebras. This higher dimensional function theory is an extension of the classical theory of holomorphic functions of several complex variables. It is based on the construction of a family of commuting complex structures on R2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{2^n}$$\end{document}. One of the relevant aspects of the theory is the validity of a Cauchy-type integral formula and the existence of ordered power series expansions. The theory includes all polynomials and power series with ordered variables and right coefficients in the algebra. We study the real dimension of the zero set of polynomials in the quaternionic and octonionic cases and give some results about the zero set of polynomials with Clifford coefficients. In particular, we show that a nonconstant polynomial always has a non empty zero set.
引用
收藏
页码:295 / 351
页数:56
相关论文
共 29 条
[1]  
Colombo F(2012)Algebraic properties of the module of slice regular functions in several quaternionic variables Indiana Univ. Math. J. 61 1581-1602
[2]  
Sabadini I(2009)Slice monogenic functions Israel J. Math. 171 385-403
[3]  
Struppa D(2006)A new approach to Cullen-regular functions of a quaternionic variable C. R. Math. Acad. Sci. Paris 342 741-744
[4]  
Colombo F(2007)A new theory of regular functions of a quaternionic variable Adv. Math. 216 279-301
[5]  
Sabadini I(2010)Regular functions on the space of Cayley numbers Rocky Mountain J. Math. 40 225-241
[6]  
Struppa DC(2011)Slice regular functions on real alternative algebras Adv. Math. 226 1662-1691
[7]  
Gentili G(2014)Power and spherical series over real alternative *-algebras Indiana Univ. Math. J. 63 495-532
[8]  
Struppa DC(2017)The algebra of slice functions Trans. Amer. Math. Soc. 369 4725-4762
[9]  
Gentili G(2017)Singularities of slice regular functions over real alternative *-algebras Adv. Math. 305 1085-1130
[10]  
Struppa DC(2020)Division algebras of slice functions Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 2055-2082