Non-Equilibrium Statistical Mechanics of Turbulence

被引:0
作者
David Ruelle
机构
[1] Rutgers University,Mathematics Department
[2] IHES,undefined
来源
Journal of Statistical Physics | 2014年 / 157卷
关键词
Turbulence; Non-equilibrium; Statistical mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
The macroscopic study of hydrodynamic turbulence is equivalent, at an abstract level, to the microscopic study of a heat flow for a suitable mechanical system (Ruelle, PNAS 109:20344–20346, 2012). Turbulent fluctuations (intermittency) then correspond to thermal fluctuations, and this allows to estimate the exponents τp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _p$$\end{document} and ζp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _p$$\end{document} associated with moments of dissipation fluctuations and velocity fluctuations. This approach, initiated in an earlier note (Ruelle, 2012), is pursued here more carefully. In particular we derive probability distributions at finite Reynolds number for the dissipation and velocity fluctuations, and the latter permit an interpretation of numerical experiments (Schumacher, Preprint, 2014). Specifically, if p(z)dz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(z)dz$$\end{document} is the probability distribution of the radial velocity gradient we can explain why, when the Reynolds number R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document} increases, lnp(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln p(z)$$\end{document} passes from a concave to a linear then to a convex profile for large z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z$$\end{document} as observed in (Schumacher, 2014). We show that the central limit theorem applies to the dissipation and velocity distribution functions, so that a logical relation with the lognormal theory of Kolmogorov (J. Fluid Mech. 13:82–85, 1962) and Obukhov is established. We find however that the lognormal behavior of the distribution functions fails at large value of the argument, so that a lognormal theory cannot correctly predict the exponents τp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _p$$\end{document} and ζp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _p$$\end{document}.
引用
收藏
页码:205 / 218
页数:13
相关论文
共 18 条
[1]  
Anselmet F(1984)High-order velocity structure functions in turbulent shear flows J. Fluid Mech. 140 63-89
[2]  
Gagne Y(1994)Chaotic cascade model for turbulent velocity distributions Phys. Rev. E 49 3641-3652
[3]  
Hopfinger EJ(1984)On the multifractal nature of fully developed turbulence and chaotic systems J. Phys. A 17 3521-3531
[4]  
Antonia RA(1996)The temperature of turbulent flows J. Phys. II France 6 105-114
[5]  
Beck C(1941)The local structure of turbulence in incompressible viscous fluid for very large Reynolds number Dokl. Akad. Nauk SSSR 30 301-305
[6]  
Benzi R(1941)On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid Dokl. Akad. Nauk SSSR 31 538-540
[7]  
Paladin G(1941)Dissipation of energy in locally isotropic turbulence Dokl. Akad. Nauk SSSR 32 16-18
[8]  
Parisi G(1962)A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number J. Fluid Mech. 13 82-85
[9]  
Vulpiani A(1987)Simple multifractal cascade model for fully developed turbulence Phys. Rev. Lett. 59 1424-1427
[10]  
Castaing B(2012)Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics PNAS 109 20344-20346