Uniqueness of tangent cone of Kähler-Einstein metrics on singular varieties with crepant singularities

被引:0
作者
Xin Fu
机构
[1] University of California,Department of Mathematics
来源
Mathematische Annalen | 2024年 / 388卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, L) be a polarized Calabi-Yau variety (or canonical polarized variety) with crepant singularities. Suppose ωKE∈c1(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{KE}\in c_1(L)$$\end{document} (or ωKE∈c1(KX))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{KE}\in c_1(K_X))$$\end{document} is the unique Ricci flat current (or Käher-Einstein current with negative scalar curvature) with local bounded potential constructed in (Eyssidieux in J Am Math Soc 22: 607-639, 2009), we show that the local tangent at any point p∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in X$$\end{document} of metric ωKE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{KE}$$\end{document} is unique.
引用
收藏
页码:3229 / 3258
页数:29
相关论文
共 62 条
[1]  
Anderson M(1990)T convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 102 429-445
[2]  
Cheeger J(1997)On the structure of space with Ricci curvature bounded below I J. Differential. Geom. 46 406-480
[3]  
Colding TH(1999)On the structure of space with Ricci curvature bounded below II J. Differ. Geom. 52 13-35
[4]  
Cheeger J(2000)On the structure of spaces with Ricci curvature bounded below. III J. Differ. Geom. 54 37-74
[5]  
Colding TH(2015)Regularity of Einstein manifolds and the codimension 4 conjecture Ann. Math. 182 1093-1165
[6]  
Cheeger J(1994)On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay Invent. Math. 118 493-571
[7]  
Colding TH(2002)On the singularities of spaces with bounded Ricci curvature Geom. Funct. Anal. 12 873-914
[8]  
Cheeger J(2021)Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below Ann. Math. 193 407-538
[9]  
Naber A(2015)Kähler-Einstein metrics on Fano manifolds. II: limits with cone angle less than J. Am. Math. Soc. 28 199-234
[10]  
Cheeger J(1975)Differential equations on Riemannian manifolds and their geometric applications Comm. Pure Appl. Math. 28 333-354