Exact traveling wave solutions and bifurcations of the Biswas–Milovic equation

被引:0
作者
Wenjing Zhu
Jibin Li
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Kunming University of Science and Technology,Department of Mathematics
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Solitary wave solution; Kink wave solution; Periodic wave solution; Compacton; Bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the Biswas–Milovic equation. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the traveling wave system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including solitary wave solutions, kink and anti-kink wave solutions, periodic wave solutions and compactons) under different parameter conditions.
引用
收藏
页码:1973 / 1987
页数:14
相关论文
共 32 条
  • [21] Eslami M(undefined)undefined undefined undefined undefined-undefined
  • [22] Mirzazadeh M(undefined)undefined undefined undefined undefined-undefined
  • [23] Khalique CM(undefined)undefined undefined undefined undefined-undefined
  • [24] Manafian J(undefined)undefined undefined undefined undefined-undefined
  • [25] Zayed EME(undefined)undefined undefined undefined undefined-undefined
  • [26] Alurrfi KAE(undefined)undefined undefined undefined undefined-undefined
  • [27] Li JB(undefined)undefined undefined undefined undefined-undefined
  • [28] Chen GR(undefined)undefined undefined undefined undefined-undefined
  • [29] Li JB(undefined)undefined undefined undefined undefined-undefined
  • [30] Chen FJ(undefined)undefined undefined undefined undefined-undefined