Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback

被引:0
作者
Jufeng Chen
Yongjun Shen
Xianghong Li
Shaopu Yang
Shaofang Wen
机构
[1] Shijiazhuang Tiedao University,Department of Mathematics and Physics
[2] Shijiazhuang Tiedao University,Department of Mechanical Engineering
[3] Shijiazhuang Tiedao University,Transportation Institute
来源
Indian Journal of Physics | 2020年 / 94卷
关键词
Fractional-order van der Pol oscillator; Time delay; Stability; Hopf bifurcation; 02.30.Hq; 05.45.-a;
D O I
暂无
中图分类号
学科分类号
摘要
The stability and existence conditions of Hopf bifurcation of a commensurate fractional-order van der Pol oscillator with time-delayed feedback are studied. Firstly, the necessary and sufficient conditions for the asymptotic stability of the equilibrium point of fractional-order van der Pol oscillator with linear displacement feedback are obtained, and it is found that the conditions are not only related to the feedback gain, but also to the fractional order. Secondly, regarding time delay as a bifurcation parameter, the stability of the commensurate fractional-order van der Pol system with time-delayed feedback is investigated based on the characteristic equation. Under some conditions, the critical value of time delay is calculated. The equilibrium point is stable when the parameter is less than the critical value and will be unstable if the parameter is greater than it. Moreover, the conditions for the occurrence of Hopf bifurcation are obtained. Finally, choosing four typical system parameters, some numerical simulations are carried out to verify the correctness of the obtained theoretical results.
引用
收藏
页码:1615 / 1624
页数:9
相关论文
共 89 条
[1]  
Wang ZH(2000)undefined J. Sound Vib. 233 215-undefined
[2]  
Hu HY(2004)undefined Chaos Solit. Fract. 22 443-undefined
[3]  
Li CP(2006)undefined Phys. Lett. A 358 1-undefined
[4]  
Peng GJ(2008)undefined Int. J. Bifurc. Chaos 18 1845-undefined
[5]  
Ahmed E(2010)undefined Int. J. Bifurc. Chaos 20 1209-undefined
[6]  
El-Sayed AMA(2012)undefined Acta Phys. Sinica 61 110505-undefined
[7]  
El-Saka HAA(2012)undefined Commun. Nonlinear Sci. 17 3092-undefined
[8]  
Donato C(2012)undefined Int. J. Non-Linear Mech. 47 975-undefined
[9]  
Giuseppe G(2012)undefined Int. J. Bifurc. Chaos 22 1230014-undefined
[10]  
Sun KH(2013)undefined Int. J. Non-Linear Mech. 48 44-undefined